(1) (5 Points) Your goal is to build a classifier that will help filter spam emails from your inbox. Suppose you select 100 emails from your inbox uniformly at random (i.e. each email in your inbox is equally likely to be selected). For each of these 100 emails, you read the email, decide whether it is spam, and assign it a binary label accordingly. You take the first 60 labeled examples and make this the training set. The next 20 you make the validation set, and the final 20 you make the test set.

You decide to build a K-NN classifier using edit distance as your distance function. For $K = 1$, you get a train error of 0.0% and a validation error of 11.2%. For $K = 2$ you get a train error of 8.5% and a validation error of 9.4%. If you had to pick between these two classifiers, which should you expect to achieve a lower error on the test set? Why?

(2) (5 Points) Now, someone gives you access to a huge database of emails with spam labels so that you can train and evaluate on as many emails as you like. You’re worried about how long the computation will take if you use large training and validation sets. If you’re using a 1-NN classifier, and you assume edit distance takes constant time to compute, how long will it take your system (asymptotically) to compute validation error for a validation set of m examples while using a training set of n examples? Why? [Use big-O notation in terms of n and m. Assume your system is implemented efficiently.]