Vulnerability of the week: Sudo flaw

What the HUG!

`sudo root with user ID -1 or 4294967295`

Attack Scenario

If `/etc/sudoers` security policy configuration file says:
myhost bob = (ALL, !root) /usr/bin/vi
i.e. user bob can run vi program with any user except root.

Then attacker can use:
`sudo -u#-1 id -u OR sudo -u#4294967295 id -u` commands to execute `vi` with root privileges.

Today

We’ve talked about ways machines can be compromised.

What happens afterward?

• Malware
Viruses, Worms, and Rootkits

• Virus: Code propagates by arranging itself to eventually be executed.
 Biological analogue: altering stored code.

• Worm: Self-propagates by arranging itself to immediately be executed.
 Alters running code.

Not really a sharp distinction.

• Rootkit: Program designed to give access to an attacker while actively hiding its presence.
Infected Program

1. User runs an infected program.
2. Program transfers control to the virus.

The Simple Virus

Infected Program

1. User runs an infected program.
2. Program transfers control to the virus.

Infected Program

The Simple Virus
3. Virus locates a new program.

Infected Program

```
0100 EB1C          JMP     011E
0102 BE1B02        MOV     SI,021B
0105 BF1B01        MOV     DI,011B
0108 8BCE          MOV     CX,SI
010A F7D9          NEG    CX
010C FC            CLD
010D B81B01        MOV     AX,0118
0110 06            PUSH    ES
0111 50            PUSH    AX
0112 06            PUSH    ES
0113 B81801        MOV     AX,0118
0116 50            PUSH    AX
0117 CB            RETF
0118 F3            REPZ
0119 A4            MOVSB
011A CB            RETF
011B E93221        JMP     2250
011E 83C24F        ADD     DX,+4F
0121 8BFA          MOV     DI,DX
0123 81FF8000      CMP     DI,0080
0127 725E          JB     0187
0129 7406          JZ     0131
012B C606250273    MOV     BYTE PTR [0225],73
0130 90            NOP
0131 F8C5          INC     CH
0133 7303          JNB    0138
0135 80C140        ADD     CL,40
0138 B8010C        MOV     AX,0C01
013B 8BD6          MOV     DX,SI
013D CD13          INT     13
0100 B435          MOV     AH,35
0102 B021          MOV     AL,21
0104 CD21          INT     21
0106 8C069A002      MOV     [02A0],ES
010A 891E9E02       MOV     [029E],BX
0110 B425          MOV     AH,25
0112 BA2001        MOV     DX,0120
0115 CD21          INT     21
0117 83C24F        ADD     DX,+4F
0118 8BFA          MOV     DI,DX
011C 81FF8000      CMP     DI,0080
0120 725E          JB     0187
0122 7406          JZ     0131
0124 C606250273    MOV     BYTE PTR [0225],73
0128 90            NOP
012A F3E5          INC     CH
012C 7303          JNB    0138
0132 B8010C        MOV     AX,0C01
0135 8BD6          MOV     DX,SI
0137 CD13          INT     13
```

4. Virus appends its logic to the end of the new file.
5. Virus updates the new program so the virus gets control when the program is launched.
Summary of Malicious Behavior

- Malware runs with some user privileges on machine. Can do anything that user can do, or escalate privileges.

- Mischief/Malice:
 - Pop up messages.
 - Trash files.
 - Damage hardware.

- Surveillance/espionage:
 - Exfiltrate information
 - Keylogging, screen capture, audio, camera
Summary of Malicious Behavior

• Economics/crime:
 • Botnet: A network of autonomous programs controlled by a remote attacker can be used at a platform for attacks.
 • Denial of service
 • Spam and clickfraud
 • Launch new exploits

• Spam
 • Selling goods/services
 • Advanced fee fraud (419 scam)
 • Phishing/spearphishing

• Clickfraud
 • Produce clicks on ads for revenue
 • or to deplete others’ ad budgets

• Extortion attacks
 • Ransomware: encrypt files and demand payment to decrypt

• Steal credentials
• Blackmail
How does malware run?
Attack a network-accessible vulnerable service.

- The Morris Worm (1988) exploited a buffer overflow in the fingerd utility, also propagated itself via rsh and cracked passwords.
 - Bogged down infected machines by uncontrolled spawning.
 - Infected 10% of internet hosts at the time.
How does malware run?
Attack a network-accessible vulnerable service.

- The Blaster Worm (2003) attacked a buffer overflow in the MS RPC interface.

Microsoft Security Bulletin MS03–026
Buffer Overrun In RPC Interface Could Allow Code Execution (823980)

Originally posted: July 16, 2003
Revised: September 10, 2003

Summary
Who should read this bulletin:
Users running Microsoft ® Windows ®

Impact of vulnerability:
Run code of attacker’s choice

Maximum Severity Rating:
Critical

Recommendation:
Systems administrators should apply the patch immediately

End User Bulletin:
An end user version of this bulletin is available at:
The Forensics of a Virus

<table>
<thead>
<tr>
<th>Date</th>
<th>Report</th>
<th>Bulletin</th>
<th>Exploit</th>
<th>Worm</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1</td>
<td>Vulnerability in RPC/DDOM reported</td>
<td>MS03-026 delivered to customers (7/16/03)</td>
<td>X-focus (Chinese group) published exploit tool</td>
<td>Blaster worm discovered — variants and other viruses hit simultaneously (i.e. “SoBig”)</td>
</tr>
<tr>
<td></td>
<td>MS activated highest level emergency response process</td>
<td>Continued outreach to analysts, press, community, partners, government agencies</td>
<td>MS heightened efforts to get information to customers</td>
<td></td>
</tr>
</tbody>
</table>

Blaster shows the complex interplay between security researchers, software companies, and hackers

Source: Microsoft

The World Today
computers. XFocus also developed a scanning tool that searches the Internet for computers that have the vulnerability and that have not been patched. XFocus made their source code for the exploit and the scanning tool available to the public via the Internet.

10. On or about August 11, 2003, Microsoft became aware of an Internet worm named Blaster. Blaster is based on the XFocus code and scans the Internet for targets, attacks them, and installs itself on the target computers. Each target computer then begins scanning and infecting other computers. Within three days, Blaster had infected an estimated one hundred thousand to two hundred thousand computers. By August 15, 2003, estimates were as high as more than one million infected computers. The Blaster worm included a preprogrammed payload of DDoS attack code. The attack code used a date and time based algorithm to launch a DDoS attack against Microsoft's www.windowsupdate.com domain name beginning on August 16, 2003. The Microsoft servers affected by this are located in the Western District of Washington. Despite exposure in the media and from Microsoft, hundreds of thousands, if not millions, of computers have not yet been patched.

11. On or about August 14, 2003, Microsoft became aware of several variants of the Blaster code. One particular variant was referred to by the Internet security community by a number of different names including "W32/Lovesan.worm.b" (hereinafter "Lovesan B"). Microsoft engineers were able to obtain several copies of executable code for this variant. Microsoft engineers disassembled the code and were able to understand what this variant does. Lovesan B contains a variant of the Blaster worm, renamed "teekids.exe". This variant code is
How does malware run?

Attack a network-accessible vulnerable service.

- The WannaCry Ransomware (2017) used a Windows SMB exploit from the Shadow Broker archive called "Eternal Blue".

![Wanna Decrypt0r 2.0](image)
WannaCry Malware

- The "Eternal Blue" exploit used in WannaCry was developed by the NSA and not disclosed to Microsoft.
- The WannaCry ransomware repurposed this exploit after it was leaked, and it took down many companies.
- Marcus Hutchins discovered a “kill switch” sinkhole domain that stopped the spread of the malware.

Microsoft Security Bulletin MS17–010 – Critical

Security Update for Microsoft Windows SMB Server (4013389)

Published: March 14, 2017
Version: 1.0

Executive Summary

This security update resolves vulnerabilities in Microsoft Windows. The most severe of the vulnerabilities could allow remote code execution if an attacker sends specially crafted messages to a Microsoft Server Message Block 1.0 (SMBv1) server.

This security update is rated Critical for all supported releases of Microsoft Windows. For more information, see the Affected Software and Vulnerability Severity Ratings section.

The security update addresses the vulnerabilities by correcting how SMBv1 handles specially crafted requests.

For more information about the vulnerabilities, see the Vulnerability Information section.

For more information about this update, see Microsoft Knowledge Base Article 4013389.
How does malware run?

Vulnerable client connects to remote system that sends over an attack “driveby”.

- Malvertising: Using web ads to deliver malicious code.
- The Cryptowall malware (2014) was a Cryptolocker clone that was delivered in malicious ads.
How does malware run?
Vulnerable client connects to remote system that sends over an attack “driveby”.

- US Government search warrants describe installing malware on a target’s computer as a “network investigative technique”.

26. In the normal course of operation, websites send content to visitors. A user’s computer downloads that content and uses it to display web pages on the user’s computer. Under the NIT authorized by this warrant, the website would augment that content with some additional computer instructions. When a computer successfully downloads those instructions from Website A, the instructions are designed to cause the “activating” computer to deliver certain information to a computer controlled by or known to the government. That information is described with particularity on the warrant (in Attachment B of this affidavit), and the warrant authorizes obtaining no other information. The NIT will not deny the user of the “activating” computer access to any data or functionality of that computer.
How does malware run?

Vulnerable client connects to remote system that sends over an attack “driveby”.

- US Government search warrants describe installing malware on a target’s computer as a “network investigative technique”.

ATTACHMENT B

This warrant authorizes a remote network technique in which law enforcement agents will transmit to each of the TARGET COMPUTERS described in Attachment A code and/or commands intended make the following information available to officers authorized to execute this warrant:

1. The TARGET COMPUTER’s actual IP address, and the date and time that the IP address is determined;

2. The TARGET COMPUTER’S Computer Name and Media Access Control Address; and

3. A unique identifier (e.g., a series of numbers, letters, and/or special characters) for the TARGET COMPUTER.
How does malware run?

Social engineering: Trick user into running or installing.

- Fake antivirus: Pops up warning that machine is infected and offers to clean for a fee.
How does malware run?

Social engineering: Trick user into running or installing.

- Flashlight trojan horse apps that steal credentials.

Flashlight LED Widget

MaxUMedia Tools

This app is compatible with your device.

You scared at night? Just turn on Flashlight!

Flashlight LED Widget is the super simple widget that turns your phone’s LED flash into a super bright flashlight that you control with a tap!

It's free of cost and doesn't contain any ads!
Just try it and enjoy!
How does malware run?

Social engineering: Trick user into running or installing.

- Hacking Team: State-sponsored malware (2012)

Uploaded to contact form on July 13, 2012:

Svp ne mentionnez pas mon nom ni rien du tout je ne veux pas d’embrouilles...

http://freeme.eu5.org/scandale%20(2).doc

https://citizenlab.org/2012/10/backdoors-are-forever-hacking-team-and-the-targeting-of-dissent/
Hacking Team Installation Pathways

Symantec
Hacking Team Marketing Materials

Go stealth and untraceable.

Defeat encryption and acquire relevant data.

Hit your target.

Remote Control System is totally invisible to the target. Our software bypasses protection systems such as antivirus, antisyware and personal firewalls.

Remote Control System gathers a variety of information from target devices.

- Encrypted voice
- Relationships
- Target location
- Web browsing
- Messaging
- Audio & Video Spy

Attack your target either remotely or locally using several installation vectors. Do that while the target is browsing the internet, opening a document file, receiving an SMS or crossing the borders with his laptop.
Lucrative legal market for exploits

ZERODIUM Payouts for Desktops/Servers*

<table>
<thead>
<tr>
<th>Payout</th>
<th>OS</th>
<th>RCE</th>
<th>LPE</th>
<th>SBX</th>
<th>VME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to $1,000,000</td>
<td>Windows</td>
<td>Remote Code Execution (RCE)</td>
<td>Local Privilege Escalation (LPE)</td>
<td>Sandbox Escape or Bypass (SBX)</td>
<td>Virtual Machine Escape (VME)</td>
</tr>
<tr>
<td>Up to $500,000</td>
<td>macOS</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
<td>VME</td>
</tr>
<tr>
<td>Up to $250,000</td>
<td>Linux/bsd</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
<td>VME</td>
</tr>
<tr>
<td>Up to $200,000</td>
<td>Any OS</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
<td>VME</td>
</tr>
<tr>
<td>Up to $100,000</td>
<td>VMware ESXi VME</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
<td>VME</td>
</tr>
<tr>
<td>Up to $80,000</td>
<td>Thunderbird RCE</td>
<td>Win/Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $60,000</td>
<td>Safari RCE</td>
<td>Mac</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Edge RCE</td>
<td>Win</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Firefox RCE</td>
<td>Win</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Word/Excel RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Webmail RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Webmin RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Adobe PDF RCE</td>
<td>Win</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>WinRAR RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>7-Zip RCE</td>
<td>Win</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Windows LPE/SBX</td>
<td>Win/Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>USB LPE</td>
<td>Win/Mac</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Antivirus RCE</td>
<td>Win</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Antivirus LPE</td>
<td>Win</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>phpBB RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>vBulletin RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>MyBB RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Joomla RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Drupal RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Roundcube RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
<tr>
<td>Up to $50,000</td>
<td>Horde RCE</td>
<td>Linux</td>
<td>RCE</td>
<td>LPE</td>
<td>SBX</td>
</tr>
</tbody>
</table>
ZERODIUM Payouts for Mobiles

- FCP: Full Chain with Persistence
- RCE: Remote Code Execution
- LPE: Local Privilege Escalation
- SBX: Sandbox Escape or Bypass

- iOS
- Android
- Any OS

(All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.)
How does malware run?

Social engineering: Trick user into running or installing.

- Exploit USB autorun functionality.

Users Really Do Plug in USB Drives They Find

Matthew Tischer† Zakir Durumeric‡ Sam Foster† Sunny Duan†
Alec Mori† Elie Bursztein◊ Michael Bailey†

† University of Illinois, Urbana Champaign ‡ University of Michigan ◊ Google, Inc.
{tischer1, sfoster3, syduan2, ajmori2, mlbailey}@illinois.edu
zakir@umich.edu elieb@google.com

(a) Unlabeled drive (b) Drive with keys (c) Drive with return label (d) Confidential drive (e) Exam solutions drive

Fig. 1: Drive Appearances — We dropped five different types of drives. We chose two appearances (keys and return label) to motivate altruism and two appearances (confidential and exam solutions) to motivate self-interest, as well as an unlabeled control.
How does malware run?
Social engineering: Trick user into running or installing.

- Stuxnet (2010) exploited USB autorun functionality to target centrifuge controllers on airgapped network.
 - First public example of state-sponsored malware targeting Iranian uranium enrichment program.
 - Once inside network also spread via Windows RPC vulnerability.
 - Used four different 0day exploits, had rootkit, stolen code-signing certificates.
1. **infection**
Stuxnet enters a system via a USB stick and proceeds to infect all machines running Microsoft Windows. By brandishing a digital certificate that seems to show that it comes from a reliable company, the worm is able to evade automated-detection systems.

2. **search**
Stuxnet then checks whether a given machine is part of the targeted industrial control system made by Siemens. Such systems are deployed in Iran to run high-speed centrifuges that help to enrich nuclear fuel.

3. **update**
If the system isn’t a target, Stuxnet does nothing; if it is, the worm attempts to access the Internet and download a more recent version of itself.

4. **compromise**
The worm then compromises the target system’s logic controllers, exploiting “zero day” vulnerabilities—software weaknesses that haven’t been identified by security experts.

5. **control**
In the beginning, Stuxnet spies on the operations of the targeted system. Then it uses the information it has gathered to take control of the centrifuges, making them spin themselves to failure.

6. **deceive and destroy**
Meanwhile, it provides false feedback to outside controllers, ensuring that they won’t know what’s going wrong until it’s too late to do anything about it.
Stuxnet social engineering exploits

In addition to this, Stuxnet also uses another trick to enhance the chances that it will be executed. The autorun commands turn off autoplay and then add a new command to the context menu. The command that is added is found in \%Windir\%\System32\shell32.dll, -8496. This is actually the “Open” string. Now when viewing the context menu for the removable device the user will actually see two “Open” commands.

One of these Open commands is the legitimate one and one is the command added by Stuxnet. If a user chooses to open the drive via this menu, Stuxnet will execute first. Stuxnet then opens the drive to hide that anything suspicious has occurred.

Stuxnet exploit flow

Stuxnet targeted Industrial Control Systems

http://www.foreignpolicy.com/articles/2013/11/19/stuxnets_secret_twin_iran_nukes_cyber_attack
WASHINGTON — From his first months in office, President Obama secretly ordered increasingly sophisticated attacks on the computer systems that run Iran’s main nuclear enrichment facilities, significantly expanding America’s first sustained use of cyberweapons, according to participants in the program.

Mr. Obama decided to accelerate the attacks — begun in the Bush administration and code-named Olympic Games — even after an element of the program accidentally became public in the summer of 2010 because of a programming error that allowed it to escape Iran’s Natanz plant and sent it around the world on the Internet. Computer security experts who began studying the worm, which had been developed by the United States and Israel, gave it a name: Stuxnet.

At a tense meeting in the White House Situation Room within days of the worm’s “escape,” Mr. Obama, Vice President Joseph R. Biden Jr. and the director of the Central Intelligence Agency at the time, Leon E. Panetta, considered whether America’s most ambitious attempt to slow the progress of Iran’s nuclear efforts had been fatally compromised.
How does malware run?
Insert into system component at manufacture.

How does malware run?
Insert into system component in supply chain.

- NSA supply chain interdiction to insert backdoors into Cisco products (2014).

(TS//SI//NF) Left: Intercepted packages are opened carefully; Right: A “load station” implants a beacon

How does malware run?

Compromise software provider.

PRODUCT AFFECTED:
Please see below for details.

PROBLEM:
During an internal code review, two security issues were identified.

Administrative Access (CVE-2015-7755) allows unauthorized remote administrative access to the device. Exploitation of this vulnerability can lead to complete compromise of the affected device.

This issue only affects ScreenOS 6.3.0r17 through 6.3.0r20. No other Juniper products or versions of ScreenOS are affected by this issue.

Upon exploitation of this vulnerability, the log file would contain an entry that ‘system’ had logged on followed by password authentication for a username.

Example:
Normal login by user username1:
2015-12-17 09:00:00 system warn 00515 Admin user username1 has logged on via SSH from
2015-12-17 09:00:00 system warn 00528 SSH: Password authentication successful for admin user ‘username1’ at host ...

Compromised login by user username2:
2015-12-17 09:00:00 system warn 00515 Admin user system has logged on via SSH from
2015-12-17 09:00:00 system warn 00528 SSH: Password authentication successful for admin user ‘username2’ at host ...

Note that a skilled attacker would likely remove these entries from the local log file, thus effectively eliminating any reliable signature that the device had been compromised.
How does malware run?
Attacker with local access downloads/runs directly.

- Example: Phone spyware for stalking/domestic abuse.

FlexiSPY iPhone Tracker Makes You Knowledgeable
So, What Will You Know When You Spy On an iPhone?

FlexiSPY iPhone Tracker Lets You:
- Intercept and listen to live phone calls
- Open the microphone and listen to the iPhone’s surroundings
- View all Pictures, Video and Audio stored on the iPhone
- Spy on instant messages such as Facebook, LINE, WhatsApp, Viber, Skype, iMessage, BBM etc.
- Remotely control the iPhone’s camera to take pictures
- View web history, bookmarks and app usage
- Spy on the iPhone’s address books, notes and calendars
- Receive alerts when keywords appear in messages
- Receive alerts when the iPhone enters prohibited areas
- Read screen lock passcode and passwords
- Over 150 iPhone tracker spy features

http://gizmodo.com/how-the-hell-are-these-popular-spying-apps-not-illegal-1682660414
How does malware run?
Attacker with local access downloads/runs directly.

 - Continuously scans for devices, logs in, and infects itself.
 - Used for DDoS attacks.
Countermeasures

• Signature-based detection
 • Look for bytes corresponding to virus code.
 • Antivirus software is a multibillion dollar industry.

• AV arms race:
 • Virus writers change viruses to evade detection.
 • One idea: Virus encrypts its code. Static code detection works less well; decryption code is small, generic.

• Cleanup:
 • Best way: rebuild from original media/backups
 • Some malware contains rootkits
 Kernel patches to hide its continuous presence

• Analysis:
 • Run in VM/sandboxed environment
 • Modern malware tries to detect if it runs in VM/fresh install and acts less maliciously