Lecture 23: Media Access Control

CSE 123: Computer Networks
Alex C. Snoeren

HW 4 DUE MONDAY
Lecture 23 Overview

- Methods to share physical media: multiple access
 - Fixed partitioning
 - Random access

- Channelizing mechanisms

- Contention-based mechanisms
 - Aloha
Fixed Partitioning

- Need to share media with multiple nodes \((n)\)
 - Multiple *simultaneous* conversations

- A simple solution
 - Divide the channel into multiple, separate \textit{channels}

- Channels are physically separate
 - Bitrate of the link is split across channels
 - Nodes can only send/receive on their assigned channel

- Several different ways to do it
 - _____ \textit{Multiple Access} madlibs…

CSE 123 – Lecture 23: Media Access Control
Frequency Division (FDMA)

- Divide bandwidth of f Hz into n channels each with bandwidth f/n Hz
 - Easy to implement, but unused subchannels go idle
 - Used by traditional analog cell phone service, radio, TV
Time Division (TDMA)

- Divide channel into rounds of n time slots each
 - Assign different hosts to different time slots within a round
 - Unused time slots are idle
 - Used in GSM cell phones & digital cordless phones

- Example with 1-second rounds
 - $n=4$ timeslots (250ms each) per round

If a sender has a signal to send, how long can they expect to wait until they can transmit?

A. No waiting
B. 250 ms
C. 500 ms
D. 1 s

CSE 123 – Lecture 23: Media Access Control
Code Division (CDMA)

- Do nothing to physically separate the channels
 - All stations transmit at same time in same frequency bands
 - One of so-called spread-spectrum techniques

- Sender modulates their signal on top of unique code
 - Sort of like the way Manchester modulates on top of clock
 - The bit rate of resulting signal much lower than entire channel

- Receiver applies code filter to extract desired sender
 - All other senders seem like noise with respect to signal

- Used in newer digital cellular technologies
Broadband modulation is a form of which media access scheme?
A. Frequency
B. Time
C. Code
D. None of the above
Problem w/Channel partitioning

- Not terribly well suited for random access usage
 - Why?

- Instead, design schemes for more common situations
 - Not all nodes want to send all the time
 - Don’t have a fixed number of nodes

- Potentially higher throughput for transmissions
 - Active nodes get full channel bandwidth
Aloha

- Designed in 1970 to support wireless data connectivity
 - Between Hawaiian Islands—rough!

- Goal: distributed access control (no central arbitrator)
 - Over a shared broadcast channel

- Aloha protocol in a nutshell:
 - When you have data **send it**
 - If data doesn’t get through (receiver sends acknowledgement) then **retransmit after a random delay**
 - Why not a fixed delay?
Collisions

- Frame sent at t_0 collides with frames sent in $[t_0-1, t_0+1]$
 - Assuming unit-length frames
 - Ignores propagation delay
Slotted Aloha

- Time is divided into equal size slots (frame size)
- Host wanting to transmit starts at start of next slot
 - Retransmit like w/Aloha, but quantize to nearest next slot
- Requires **time synchronization** between hosts

Example has 3 successes out of 9 slots. Is that performance...?

A. Worse than expected
B. Better than expected
C. About right
D. A miracle!
Channel Efficiency

Q: What is max fraction slots successful?
A: Suppose n stations have packets to send
 - Each transmits in slot with probability p
 - $\text{Prob}[\text{successful transmission}], S$, is:

 $S = p \cdot (1-p)^{(n-1)}$

 - any of n nodes:

 $S = \text{Prob[one transmits]} = np(1-p)^{(n-1)}$

 (optimal p as $n \to \infty = 1/n$)

 $= 1/e = .37$

At best: channel used for useful transmissions 37% of time!
Carrier Sense (CSMA)

- Aloha transmits even if another host is transmitting
 - Thus guaranteeing a collision

- Instead, listen *first* to make sure channel is idle
 - Useful only if channel is frequently idle
 - Why?

- How long to be confident channel is idle?
 - Depends on maximum propagation delay
 - Small (<<1 frame length) for LANs
 - Large (>>1 frame length) for satellites
Retransmission Options

- **non-persistent CSMA**
 - Give up, or send after some random delay
 - Problem: may incur larger delay when channel is idle

- **1-persistent CSMA**
 - Send as soon as channel is idle
 - Problem: blocked senders all try to send at once

- **P-persistent CSMA**
 - If idle, send packet with probability p; repeat
 - Make sure $(p \times n) < 1$
Even with CSMA there can still be collisions. Why?

- If nodes can detect collisions, abort! (CSMA/CD)
 - Requires a minimum frame size (“acquiring the medium”)
 - B must continue sending (“jam”) until A detects collision

- Requires a full duplex channel
 - Wireless is typically half duplex; need an alternative
For Next Time

- NO CLASS FRIDAY
- HW 4 due on Monday
- Have a great Thanksgiving break!