Lecture 22: Modulation

CSE 123: Computer Networks
Alex C. Snoeren

HW 4 DUE MONDAY
Lecture 22 Overview

- Signaling
 - Channel characteristics

- Signaling constraints
 - Inter-Symbol Interference
 - Shannon’s Law

- Encoding schemes
 - Clock recovery
 - Manchester, NRZ, NRZI, etc.
Signals and Channels

- A **signal** is some form of energy (light, voltage, etc)
 - Varies with time (on/off, high/low, etc.)
 - Can be continuous or discrete

- A **channel** is a physical medium that conveys energy
 - Any real channel will distort the input signal as it does so
 - How it distorts the signal depends on the signal
Channel Challenges

- Every channel degrades a signal
 - Distortion impacts how the receiver will interpret signal
Two Main Tasks

- First we need to transmit a signal
 - Determine how to send the data, and how quickly

- Then we need to receive a (degraded) signal
 - Figure out when someone is sending us bits
 - Determine which bits they are sending

- A lot like a conversation
 - “WhatintheworldamIsaying” – needs punctuation and pacing
 - Helps to know what language I’m speaking
Binary signaling with Voltage

- Encode 1’s and 0’s on a wire
 - +5 volts = 1
 - -5 volts = 0
The Magic of Sine Waves

- All periodic signals can be expressed as sine waves
 - Component waves are of different frequencies

- Sine waves are “nice”
 - Phase shifted or scaled by most channels

- “Easy” to analyze
 - But not in this class…

- The higher the frequency, the “sharper” the edges
Channel Properties

- **Bandwidth**-limited
 - *Range* of frequencies the channel will transmit
 - Means the channel is slow to react to change in signal

- **Power** **attenuates** over distance
 - Signal gets softer (harder to “hear”) the further it travels
 - Different frequencies have different response (**distortion**)

- **Background** **noise** or interference
 - May add or subtract from original signal

- **Different physical characteristics**
 - Point-to-point vs. shared media
 - Very different price points to deploy
Carrier Signals

- **Baseband** modulation: send the “bare” signal
 - E.g. +5 Volts for 1, -5 Volts for 0
 - All signals fall in the same frequency range

- **Broadband** modulation
 - Use the signal to modulate a high frequency signal (carrier).
 - Can be viewed as the product of the two signals

CSE 123 – Lecture 22: Modulation
Forms of Digital Modulation

- Amplitude Shift Keying (ASK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (PSK)
Intersymbol Interference

- Bandlimited channels cannot respond faster than some maximum frequency f
 - Channel takes some time to settle

- Attempting to signal too fast will mix symbols
 - Previous symbol still “settling in”
 - Mix (add/subtract) adjacent symbols
 - Leads to intersymbol interference (ISI)

- Nyquist says in a channel bandlimited to f, we can send at maximum symbol (baud) rate of $2f$ without ISI
Multiple Bits per Symbol

- Nyquist limits the number of symbols per second we can send, but doesn’t talk about the information content in each symbol

- Couldn’t we send multiple bits per symbol?
 - E.g., multiple voltage levels instead of just high/low
 - Four levels gets you two bits, $\log_2 M$ in general (M levels)

- Can combine this observation with Nyquist
 - Channel capacity: $C < 2B \log_2(M)$

- Why not infinite levels? Infinite capacity, no?
Noise matters

- Real channels are **noisy**… noise creates measurement challenges
- **Example:**
 - Encode 4 values using voltage
 - 2 bits per symbol
 - Symbols at 3V, 2V, 1V and 0V
 - What if noise is 0.5V?
 - If you get line level of 2.5V then what symbol is it? 11 or 10?
- **Limited to ~ log₂ (S/2N) bits per symbol**
 - (S = signal power, N = Noise)
 - Previous example: S = 3V-0V=3V, N=0.5V, so we can have log₂(3/1) = 1.58 bits per symbol
Shannon’s Law

- Shannon considered noisy channels and derived

\[C = B \log (1 + S/N) \]

- Gives us an upper bound on any channel’s performance regardless of signaling scheme

- Old school modems approached this limit
 - \(B = 3000Hz, S/N = 30\text{dB} = 1000 \)
 - \(C = 3000 \times \log(1001) \approx 30\text{kbps} \)
 - 28.8Kbps – anyone remember dialup?
Sampling

To reconstruct a signal, we need to sample it.

Which of the following are potential interpretations of the signal at left?

- A. 1101
- B. 11110011
- C. 0000
- D. All of the above
Why sampling rate matters…

- Signal could have multiple interpretations

Which of these is correct?
The Importance of Phase

- Need to determine when to START sampling, too
Clock Recovery

- Using a training sequence to get receiver lined up
 - Send a few, known initial training bits
 - Adds inefficiency: only m data bits out of n transmitted

- Need to combat clock drift as signal proceeds
 - Use transitions to keep clocks synched up

- Question is, how often do we do this?
 - Quick and dirty every time: asynchronous coding
 - Spend a lot of effort to get it right, but amortize over lots of data: synchronous coding
Asynchronous Coding

- Encode several bits (e.g. 7) together with a leading “start bit” and trailing “stop bit”
- Data can be sent at any time

- Start bit transition kicks of sampling intervals
 - Can only run for a short while before drifting
Example: RS232 serial lines

- Uses two voltage levels (+15V, -15V), to encode single bit binary symbols
- Needs long idle time – limited transmit rate
Synchronous Coding

- Asynchronous receiver phase locks each symbol
 - Takes time, limiting transmission rates

- So, start symbols need to be extra slow
 - Need to fire up the clock, which takes time

- Instead, let’s do this training once, then just keep sync
 - Need to continually adjust clock as signal arrives
 - Ever hear of Phase Lock Loops (PLLs)?

- Basic idea is to use transitions to lock in
Non-Return to Zero (NRZ)

- Signal to Data
 - High \Rightarrow 1
 - Low \Rightarrow 0

- Comments
 - Transitions maintain clock synchronization
 - Long strings of 0s confused with no signal
 - Long strings of 1s causes baseline wander
 » We use average signal level to infer high vs low
 - Both inhibit clock recovery

![NRZ Diagram]
Non-Return to Zero Inverted (NRZI)

- Signal to Data
 - Transition $\Rightarrow 1$
 - Maintain $\Rightarrow 0$

- Comments
 - Solves series of 1s, but not 0s
Manchester Encoding (10Mbps Ethernet)

- **Signal to Data**
 - XOR NRZ data with senders clock signal
 - High to low transition \Rightarrow 1
 - Low to high transition \Rightarrow 0

- **Comments**
 - Solves clock recovery problem
 - Only 50% efficient (½ bit per transition)
 - Still need preamble (typically 0101010101… trailing 11 in Ethernet)
Encoding Summary

- **Signaling & Modulation**
 - Transforming digital signal to and from analog representation
 - Fundamental limits (Shannon)
 - Lots of ways to encode signal (modulation) onto a given medium

- **Clock recovery**
 - Receiver needs to adjust its sampling times to best extract signal from channel
 - Sender can code signal to make it far easier to do this
For Next Time

- HW 4 due next Monday
- Keep going on the project…
- No class on Friday