Lecture 12 Overview

- Finish IPv6
- User-friendly names (DNS)
- Discovering addresses (DHCP/ARP)
- Network address translation (NAT)
IPv6 vs IPv4 header

- Gray bits are unique to each header
- Changes
 - Eliminate fragmentation-related fields
 - Eliminate header checksum
 - Added flow label
 - Quadruple size of addresses
 - IPv6 header (40 bytes) vs IPv4 (20 bytes)
Extension Headers

- Effectively a linked list of headers
 - The “next header” field is the pointer

- Two different types
 - **Destination**, intended for the IP end point. E.g.,
 - 44: Fragmentation Header (it’s baaack!)
 - 43: Routing header (dictates how to route the packet)

 - **Hop-by-hop**, processed by each node on the path
IPv6 Transition is slow

- Need to support both protocols at the same time
 - Complicated… if a destination has both a IPv4 and IPv6 address which to use?
- Less need in developed world -> slower adoption
- That said
 - All major operating systems now support IPv6
 - All major router vendors
 - US Mobile carriers (e.g., Tmobile, Verizon, etc)
 - Offered as option by many US ISPs
- In your lifetime it is likely that IPv6-based addressing will start to dominate
Addressing Summary

- You can’t route efficiently on flat address spaces
 - You’d need a table the size of all hosts on the Internet
 - You’d need to send updates about that table to everyone

- Network-layer addressing is done hierarchically
 - Routing prefix + host suffix
 - Originally, this split was done statically (class-based addressing)
 - Now it is done dynamically (CIDR)
 - Requires more complex forwarding table lookup
 - Allows contiguous chunks of address space to be aggregated (for the purposes of routing) into fewer prefixes
Layers of Identifiers

- **Link-layer (MAC) address** (e.g., 58:B0:35:F2:3C:D9)
 - Used by *network adaptors* to identify interesting frames
 - Unique, hard-coded identifier “burned into” network adaptor
 - Flat name space (of 48 bits in Ethernet)

- **IP address** (e.g., 128.54.70.238)
 - Used by *routers* to forward packets
 - Unique, topologically meaningful locator
 - Hierarchical namespace of 32 bits

- **Host name** (e.g., www.ucsd.edu)
 - Used by *humans* to specify host of interest
 - Unique, selected by host administrator
 - Hierarchical, variable-length string of alphanumeric characters

Which “names” CANNOT be used to address packets/frames?

A. MAC addresses
B. IP addresses
C. Host names
D. None of the above
MAC addresses: 58:B0:35:F2:3C:D9
 - OUIs: assigned to vendors by the IEEE
 - Adapters: assigned by the vendor from its block

IP addresses: 128.54.70.238
 - Prefixes: ICANN, regional Internet registries, and ISPs
 - Hosts: static configuration, or dynamic using DHCP

Host name: www.ucsd.edu
 - Domain: registrar for each top-level domain (e.g., .edu)
 - Host name: local administrator assigns to each host
Mapping Between Identifiers

- **Domain Name System (DNS)**
 - Given a host name, provide the IP address
 - Given an IP address, provide the host name

- **Address Resolution Protocol (ARP)**
 - Given an IP address, provide the MAC address
 - To enable communication within the Local Area Network

- **Dynamic Host Configuration Protocol (DHCP)**
 - Automates host boot-up process
 - Given a MAC address, assign a unique IP address
 - ... and tell host other stuff about the Local Area Network

Which devices run ARP?
A. Hosts
B. Routers
C. Bridges
D. A & B
E. A, B & C
Domain Name System (DNS)

- Distributed administrative control
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers

- Performing the translations
 - Local DNS servers
 - Resolver software
DNS: Distributed Database

To which TLD does UCSD belong?
A. .edu
B. .us
C. Both
D. Neither

CSE 123 – Lecture 12: Naming
DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M

 A Verisign, Dulles, VA
 C Cogent, Herndon, VA
 D U Maryland College Park, MD
 G US DoD Vienna, VA
 H ARL Aberdeen, MD
 J Verisign (164 locations)
 E NASA Mt View, CA
 F Internet Sys. C. Palo Alto, CA
 B USC-ISI Marina del Rey, CA
 L ICANN Los Angeles, CA
 K RIPE London
 I Netnod, Stockholm
 M WIDE Tokyo
Using DNS

- Local DNS server ("default name server")
 - Usually near the end hosts who use it
 - Local hosts configured with local server (e.g., /etc/resolv.conf) or learn the server via DHCP

- Client application
 - Extract server name (e.g., from the URL)
 - Do `gethostbyname()` to trigger resolver code

- Server application
 - Extract client IP address from socket
 - Optional `gethostbyaddr()` to translate into name
Example

Host at cis.poly.edu wants IP address for www.cs.ucsd.edu

1. requesting host cis.poly.edu
2. local DNS server dns.poly.edu
3. root DNS server
4. TLD DNS server
5. authoritative DNS server hostmaster.ucsd.edu
6. www.cs.ucsd.edu
Reliability

- DNS servers are replicated
 - Name service available if at least one replica is up
 - Queries can be load balanced between replicas

- UDP used for queries
 - Need reliability: must implement this on top of UDP
 - Try alternate servers on timeout
 - Exponential backoff when retrying same server

- Cache responses to decrease load
 - Both at end hosts and local servers
Whence come IP Addresses?

- You already have a bunch from the days when you called Jon Postel and asked for them (e.g. BBN)
- You get them from another provider
 - E.g. buy service from Sprint and get a /24 from one of their address blocks
- You get one directly from a routing registry
 - ARIN: North America, APNIC (Asia Pacific), RIPE (Europe), LACNIC (Latin America), AFRINIC (Africa)
 - Registries get address from IANA (Internet Assigned Numbers Authority)
For Next Time

- Homework 2 due at beginning of next class
- Midterm next MONDAY
- Finish up Project 1; due next FRIDAY!