Lecture 10: Addressing

HW 2 due NEXT FRIDAY
Lecture 10 Overview

- Fragmentation example
- ICMP, the *other* network-layer protocol
- IP Addresses
 - Class-based addressing
- Subnetting
 - Classless addressing
Fragmentation Example

One large datagram becomes several smaller datagrams

(Offset actually encoded as bytes/8)

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>MF</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>MF</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>1480</td>
</tr>
<tr>
<td>1040</td>
<td>x</td>
<td>0</td>
<td>2960</td>
</tr>
</tbody>
</table>

CSE 123 – Lecture 10: Addressing
Recursive fragmentation

Suppose this packet needs to be sent on a network with a 500-byte MTU.

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>MF</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>1480</td>
</tr>
</tbody>
</table>

How many fragments will result?

A. 1
B. 2
C. 3
D. 4

What will be the offset of the second fragment?

A. 480 bytes
B. 1480 bytes
C. 1960 bytes
D. 1980 bytes
Costs of Fragmentation

- Interplay between fragmentation and retransmission
 - A single lost fragment may trigger retransmission
 - Any retransmission will be of entire packet (why?)

- Packet must be completely reassembled before it can be consumed on the receiving host
 - Takes up buffer space in the mean time
 - When can it be garbage collected?

- Why not reassemble at each router?
Path MTU Discovery

- Path MTU is the smallest MTU along path
 - Packets less than this size don’t get fragmented

- Fragmentation is a burden for routers
 - We already avoid reassembling at routers
 - Avoid fragmentation too by having hosts learn path MTUs

- Hosts send packets, routers return error if too large
 - Hosts can set “don’t fragment” flag
 - Hosts discover limits, can size packets at source
Aside: ICMP

- What happens when things go wrong?
 - Need a way to test/debug a large, widely distributed system

- ICMP = Internet Control Message Protocol (RFC792)
 - Companion to IP – required functionality

- Used for error and information reporting:
 - Errors that occur during IP forwarding
 - Queries about the status of the network
ICMP Error Message Generation

- ICMP messages include portion of IP packet that triggered the error (if applicable) in their payload
Common ICMP Messages

- Fragmentation needed
 - Need to fragment, but don’t fragment bit set

- TTL Expired
 - Used by the “traceroute” program
 - traceroute traces packet routes through Internet

- Destination unreachable
 - “Destination” can be host, network, port, or protocol

- Redirect
 - To shortcut circuitous routing

- Echo request/reply
 - Used by the “ping” program
 - ping just tests for host liveness
ICMP Restrictions

- The generation of error messages is limited to avoid cascades
 - Error causes error that causes error…

- Don’t generate ICMP error in response to:
 - An ICMP error
 - Broadcast/multicast messages (link or IP level)
 - IP header that is corrupt or has bogus source address
 - Fragments, except the first

- ICMP messages are often rate-limited too
 - Don’t waste valuable bandwidth sending tons of ICMP messages
Addressing Considerations

- Fixed length or variable length addresses?

- Issues:
 - Flexibility
 - Processing costs
 - Header size

- Engineering choice: IP uses fixed length addresses
IP Addresses

- 32-bits in an IPv4 address
 - Dotted decimal format a.b.c.d
 - Each represent 8 bits of address

- Hierarchical: Network part and host part
 - E.g. IP address 128.54.70.238
 - 128.54 refers to the UCSD campus network
 - 70.238 refers to the host ieng6.ucsd.edu

- Which part is network vs. host?
Class-based Addressing

- Most significant bits determines “class” of address

 Class A: \[\begin{array}{c|c|c} 0 & \text{Network} & \text{Host} \end{array} \]
 - 127 nets, 16M hosts

 Class B: \[\begin{array}{c|c|c} 1 & \text{Network} & 16 \end{array} \]
 - 16K nets, 64K hosts

 Class C: \[\begin{array}{c|c|c} 1 & 1 & \text{Network} \end{array} \]
 - 2M nets, 254 hosts

- Special addresses
 - Class D (1110) for multicast, Class E (1111) experimental
 - 127.0.0.1: local host (a.k.a. the loopback address)
 - Host bits all set to 0: network address
 - Host bits all set to 1: broadcast address

To what class network does 132.239.180.101 belong?

A. A
B. B
C. C
D. D
IP Forwarding Tables

- Router needs to know where to forward a packet

- Forwarding table contains:
 - List of network names and next hop routers
 - Local networks have entries specifying which interface
 » Link-local hosts can be delivered with Layer-2 forwarding

- E.g. www.ucsd.edu address is 132.239.180.101
 - Class B address – class + network is 132.239
 - Lookup 132.239 in forwarding table
 - Prefix – part of address that really matters for routing
Subnetting

- Individual networks may be composed of several LANs
 - Only want traffic destined to local hosts on physical network
 - Routers need a way to know which hosts on which LAN

- Networks can be arbitrarily decomposed into subnets
 - Each subnet is simply a prefix of the host address portion
 - Subnet prefix can be of any length, specified with netmask

CSE 123 – Lecture 10: Addressing
For Next Time

- Read 4.1
- Turn in Homework 2 before class Friday