ECE 259A: Problem Set #3

1. Let $\alpha \in GF(2^9)$, and let the minimal polynomial of α be $x^9 + x + 1$. Find the order of α.

2. (a) Prove that $f(x) = x^3 + x^2 + 2$ is irreducible over $GF(3)$.
 (b) Let α denote the root of $f(x)$, and assume that $f(x)$ is used to construct $GF(27)$. Compute $(2\alpha + 1)(\alpha^2 + 2)$ in $GF(27)$.
 (c) What are the possible multiplicative orders of the elements of $GF(27)$?
 (d) What is the order of α?

3. (a) Prove that each element β of $GF(p^m)$ has a unique p-th root, that is $\gamma \in GF(p^m)$ such that $
\gamma^p = \beta$.
 (b) What are all the square roots of 1 in a field of characteristic two? In a field of odd characteristic?
 (c) Show that if α and β are primitive elements in a field of odd characteristic, then $\alpha\beta$ is not primitive.
 (d) Find primitive elements α and β in some field of characteristic two, such that $\alpha\beta$ is also primitive.

4. (a) Find a polynomial of degree 2 which is irreducible over $GF(2)$, and use this polynomial to construct $GF(4)$.
 (b) Find a polynomial of degree 2 which is irreducible over $GF(4)$, and use this polynomial along with the result of (a) to construct $GF(16)$.

5. The polynomial $f(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible over $GF(2)$. Let α denote the root of $f(x)$.
 (a) Show that α is not primitive in the field $GF(2)[x]/f(x)$.
 (b) Show that $\alpha + 1$ is primitive in this field.
 (c) Find the minimal polynomial $g(x)$ of $\alpha + 1$.
 (d) Find an isomorphism mapping between $GF(2)[x]/f(x)$ and $GF(2)[x]/g(x)$.

6. (a) Express the polynomial $x^6 - 1$ as a product of monic polynomials that are irreducible over $GF(2)$. How many monic polynomials divide $x^6 - 1$ over $GF(2)$?
 (b) Repeat (a) with "GF(2)" replaced by "GF(3)".

7. Let $\beta = \alpha^i$, where α is a primitive element of $GF(p^m)$. Prove that the minimal polynomial of β is $M_{\beta}(x) = \prod_{j \in C_i}(x - \alpha^j)$, where C_i is the cyclotomic coset mod $p^m - 1$ containing i.