ECE 259A: Solutions to the Midterm Exam

Problem 1.

For a codeword \(x \in C \), define its decoding region as the set of all vectors \(y \in \mathbb{F}_2^n \) such that \(D(y) = x \). Clearly, such decoding regions are disjoint, forming a partition of \(\mathbb{F}_2^n \). Now, assume to the contrary that

\[
D(x + e) = x \quad \text{whenever} \quad \text{wt}(e) \leq t + 1
\]

In other words, for all \(x \in C \), the Hamming sphere of radius \(t + 1 \) about \(x \) belongs to the decoding region of \(x \). Since decoding regions are disjoint, this implies that Hamming spheres of radius \(t + 1 \) about the codewords of \(C \) are disjoint. But if \(x \) and \(x' \) are codewords with \(d(x, x') = d \), then Hamming spheres of radius \(t + 1 \) about \(x \) and \(x' \) clearly intersect.

Here is another proof, which is somewhat shorter. Suppose that \(d = 2t + 2 \). Let \(x, x' \in C \) be two codewords at distance \(d = (t+1) + (t+1) \) from each other. Then there is a vector \(y \in \mathbb{F}_2^n \) such that

\[
y = x + e = x' + e' \quad \text{with} \quad \text{wt}(e) = \text{wt}(e') = t + 1
\]

If \(D(y) = x \) then the decoder fails to correct \(x' + e' \), while if \(D(y) = x' \) then \(D(x + e) \neq x \). In case \(d = 2t + 1 \), a similar argument applies.

Problem 2.

a. Let \(C = C_1 \otimes C_2 \). It follows from the definition of \(C_1 \otimes C_2 \) that the codewords of \(C \) take the form \((u_1 G_1 | u_1 G_1 + u_2 G_2) \), where \(G_1 \) and \(G_2 \) are generator matrices for \(C_1 \) and \(C_2 \), respectively, \(u_1 \) takes values in \(\mathbb{F}_2^{k_1} \) and \(u_2 \) takes values in \(\mathbb{F}_2^{k_2} \). But the linear span of the rows of the matrix \(G \) is of precisely the same form. Moreover, it is easy to see that the rows of \(G \) are linearly independent. Hence \(G \) is a generator matrix for \(C \).

b. Let \(C = C_1 \otimes C_2 \) as before, and let \(v = (v_1 | v_2) \) be a binary vector of length \(2n \), with \(v_1, v_2 \in \mathbb{F}_2^n \). Then \(v \in C \) if and only if \(v_1 \in C_1 \) and \(v_2 - v_1 = v_2 + v_1 \) belongs to \(C_2 \). Equivalently, \(v \in C \) if and only if \(H_1 v_1^t = 0 \) and \(H_2(v_1 + v_2)^t = 0 \). Equivalently, \(v \in C \) if and only if

\[
\begin{pmatrix}
H_1 & 0 \\
H_2 & H_2
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix} = 0
\]

c. Let \(c_1 \) be a codeword of weight \(d_1 \) in \(C_1 \) and let \(c_2 \) be a codeword of weight \(d_2 \) in \(C_2 \). Then both \((c_1|c_1) \) and \((0|c_2) \) are codewords of \(C_1 \otimes C_2 \). This implies that \(d \leq \min\{2d_1, d_2\} \). To prove the inequality in the opposite direction, consider a codeword \(v = (v_1 | v_2) \) in \(C_1 \otimes C_2 \) and suppose that \(\text{wt}(v) < d_2 \). Notice that \(v_1 + v_2 \) is a codeword of \(C_2 \), by construction. But we have

\[
\text{wt}(v_1 + v_2) = \text{wt}(v_1) + \text{wt}(v_2) - 2\text{wt}(v_1 \wedge v_2) \leq \text{wt}(v_1) + \text{wt}(v_2) = \text{wt}(v) < d_2
\]

This is only possible if \(v_1 + v_2 = 0 \), so that \(v_2 = v_1 \). But \(v_1 \) is a codeword of \(C_1 \). Hence, either \(v_1 = v_2 = 0 \) so that \(v = 0 \), or \(\text{wt}(v) = \text{wt}(v_1) + \text{wt}(v_2) = 2\text{wt}(v_1) \geq 2d_1 \).
d. We have \(n_1 = k_1 = 2 \) and \(d_1 = 1 \). The recursion \(C_m = C_{m-1} \oplus \{0,1\} \) doubles the length of the code and the number of codewords. Hence \(n_m = 2n_{m-1} \) and \(k_m = k_{m-1} + 1 \). It follows that

\[
n_m = 2^m \quad \text{and} \quad k_m = m + 1 \quad \text{for} \quad m = 1, 2, \ldots
\]

Clearly, the minimum distance of the code \(\{0,1\} \) of length \(n_{m-1} \) is \(2^{m-1} \). Hence, part (e) of this problem implies that

\[
d_m = \min\{2d_{m-1}, 2^{m-1}\} = 2^{m-1} \quad \text{for} \quad m = 1, 2, \ldots
\]

where the second equality follows by induction on \(m \). For \(m = 3 \), we have \(n_3 = 8, k_3 = 4 \), and \(d_3 = 4 \). There is a unique binary linear code with these parameters — namely, the \((8,4,4)\) extended Hamming code.

e. We can prove this using, for example, the Plotkin bound. This bound asserts that for any \((n,k,d)\) binary linear code, we have

\[
d \leq \left\lfloor \frac{n2^{k-1}}{2^k - 1} \right\rfloor = \left\lfloor \frac{2^m}{2^{m+1} - 1} \right\rfloor = 2^{m-1}
\]

where the second equality follows by substituting the parameters \(n_m = 2^m \) and \(k_m = m + 1 \) from (1). Thus the code \(C_m \) achieves the Plotkin bound for all \(m \).

Problem 3.

This is a generalization of the sphere-packing bound. Let \(S_t \) denote the set of all bursts of length \(\ell \leq t \), and let \(x_1, x_2, \ldots, x_{2^k} \) be the codewords of \(C \). If \(D : F_2^n \to C \) is the decoder for \(C \) that corrects all bursts of length \(t \) or less, then

\[
D(x_i + e) = x_i \quad \text{whenever} \quad e \in S_t
\]

for all \(i = 1, 2, \ldots, 2^k \). It follows that the sets \(x_1 + S_t, x_2 + S_t, \ldots, x_{2^k} + S_t \) are disjoint, and therefore we have

\[
2^n \geq \left| \bigcup_{x \in C} (x + S_t) \right| = \sum_{x \in C} |x + S_t| = 2^k |S_t|
\]

as in the sphere-packing bound. In order to complete the proof, it remains to show that the cardinality of \(S_t \) is given by \(1 + n + \sum_{\ell=2}^t (n-\ell+1)2^{\ell-2} \). Clearly, there is one “burst” of length zero, namely the vector \(0 \), and \(n \) bursts of length 1. For a burst of length \(\ell \geq 2 \), there are \(n - \ell + 1 \) positions where the burst can start, and then \(2^\ell - 2 \) different ways to complete the interior of the burst for each starting position.

Problem 4.

The \((24,12,8)\) binary Golay code \(C_{24} \) is an extended perfect code. As such, it is a quasiperfect code and has covering radius \(\rho = 4 \). Hence every vector in \(F_{2^{24}} \) is within distance \(\leq 4 \) from \(C_{24} \). On the other hand, if \(C_{24} \) were a subcode of the Wagner code \(C \), this would imply that at least some vectors in \(F_{2^{24}} \), namely those in \(C \setminus C_{24} \), are at distance \(\geq 6 \) from \(C_{24} \).