ECE 259A: Midterm Exam

Instructions: There are four problems, weighted as shown below. Notice that the maximum possible score on this exam is 110. This means that you have 10 bonus points. The exam is open book and open notes: you may use any auxiliary material that you like.

Good luck!

Problem 1. (15 points)

Let C be a binary code of length n with minimum distance d. A decoder for C is a function $D: \mathbb{F}_2^n \rightarrow C$. Let $t = \lceil (d-1)/2 \rceil$. Show that t is the maximum number of errors that any decoder for C can guarantee to correct. That is, prove that for every decoder $D: \mathbb{F}_2^n \rightarrow C$, there exist a codeword x and an error vector e of weight $\leq t + 1$ such that $D(x + e) \neq x$.

Problem 2. (45 points)

Let C_1 and C_2 be two binary linear codes of the same length n. Denote $k_1 = \dim C_1$ and $k_2 = \dim C_2$. Let d_1, d_2 be the minimum distances of C_1 and C_2, respectively. Define the code $C_1 \otimes C_2$ as follows:

$$C_1 \otimes C_2 \overset{\text{def}}{=} \left\{ (x_1 | x_1 + x_2) : x_1 \in C_1 \text{ and } x_2 \in C_2 \right\}$$

a. Let G_1 and G_2 be generator matrices of C_1 and C_2, respectively, and let O denote the $k_2 \times n$ all-zero matrix. Show that $C_1 \otimes C_2$ is a binary linear code generated by

$$G = \begin{pmatrix} G_1 & O \\ O & G_2 \end{pmatrix}$$

b. Let H_1 and H_2 be parity-check matrices for C_1 and C_2, and let O denote the $(n-k_1) \times n$ all-zero matrix. Show that a parity-check matrix for $C_1 \otimes C_2$ is given by:

$$H = \begin{pmatrix} H_1 & O \\ H_2 & H_2 \end{pmatrix}$$

c. Prove that the minimum distance of $C_1 \otimes C_2$ is given by $d = \min\{2d_1, d_2\}$.

d. Now let C_1 be the binary linear code of length 2 given by $C_1 = \{00, 01, 10, 11\}$. For $m \geq 2$, define the code C_m recursively as follows:

$$C_m \overset{\text{def}}{=} C_{m-1} \otimes \{0, 1\}$$

where 0, 1 denote the all-zero and all-one vectors of the appropriate length. Determine the parameters n_m, k_m, d_m of the code C_m for all $m \geq 1$. Can you recognize the code C_3?

e. Prove that the minimum distance of C_m is the highest possible for its length and dimension.
Problem 3. (25 points)
A binary vector e is said to be a burst of length ℓ if the difference between the last (rightmost) and the first (leftmost) nonzero positions in e is exactly $\ell - 1$. For example, the following vectors:

\[(001000), (000011), (010100), (001101), (101110), (100001)\]

are bursts of length 1, 2, 3, 4, 5, 6, respectively. Let C be an (n,k) binary linear code, and suppose there exists a decoder for C that corrects all bursts of length t or less, where $t \geq 2$. Prove that

$$2^{n-k} \geq 1 + n + \sum_{\ell=2}^{t} (n-\ell+1)2^{\ell-2}$$

Problem 4. (25 points)
A binary linear code C with parameters $n = 24$, $k = 14$, and $d = 6$ was discovered by T.J. Wagner. Show that the $(24,12,8)$ extended binary Golay code C_{24} cannot be a subcode of C.