Stereo Vision II

Computer Vision I

CSE252A

Lecture 12

Announcement

• HW2 extension until Thurs 11:59PM
• HW3 to be assigned tomorrow, due Tues 11/20
Stereo Vision Outline

- Offline: Calibrate cameras & determine "epipolar geometry"
- Online
 1. Acquire stereo images
 2. Rectify images to convenient epipolar geometry
 3. Establish correspondence
 4. Estimate depth

BINOCULAR STEREO SYSTEM
Estimating Depth
2D world with 1-D image plane

Two measurements: X_L, X_R
Two unknowns: X, Z

Constants:
- Baseline: d
- Focal length: f

\[X = \frac{df X_L}{(X_L - X_R)} \]
\[Z = \frac{d f}{(X_L - X_R)} \]

Disparity: $(X_L - X_R)$

$X_L = f(X/Z)$
$X_R = f((X-d)/Z)$

(Adapted from Hager)
Need for correspondence

Naïve complexity: If each image is n-pixels by n-pixels, then comparing all possible combinations is $O(n^4)$ which is brutal.

For a given point in the left image, where do we look in the right image?
Stereo Vision Outline

- **Offline:** Calibrate cameras & determine “epipolar geometry”
- **Online**
 1. Acquire stereo images
 2. Rectify images to convenient epipolar geometry
 3. Establish correspondence
 4. Estimate depth

Epipolar matching

- Potential matches for p have to lie on the corresponding epipolar line l'.
- Potential matches for p' have to lie on the corresponding epipolar line l.
Epipolar Geometry

- Baseline: line connecting two centers of projection
- Epipoles: Two intersection points of baseline with image planes
- Epipolar Plane: Any plane that contains the baseline
- Epipolar Lines: Pair of line from intersection of an epipolar plane with the two image planes

Family of epipolar Planes

The set of epipolar planes is a family of all planes passing through the baseline and can be parameterized by the angle about baseline
Interlude:
Skew Symmetric Matrix & Cross Product

- The cross product $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} can be expressed a matrix vector product $[\mathbf{a}_\times] \mathbf{b}$ where $[\mathbf{a}_\times]$ is the skew symmetric matrix:

$$[\mathbf{a}_\times] = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

- A matrix \mathbf{S} is skew symmetric iff $\mathbf{S} = -\mathbf{S}^T$

Epipolar Constraint: Calibrated Case

- Two pinhole cameras
- Camera π' and π differ by rotation \mathbf{R} and translation \mathbf{t}
- Let each camera be “calibrated”, with focal length 1mm, origin at the camera center, and pixel coordinates in mm.

- \mathbf{P} projects to \mathbf{p} in Camera π and \mathbf{p}' in Camera π', what is relation of the coordinates of \mathbf{p} and \mathbf{p}'?
Epipolar Constraint: Calibrated Case

The vectors O_p, $O'O'$, and $O'p'$ are coplanar

$$\overrightarrow{O_p} \cdot (\overrightarrow{O'O} \times \overrightarrow{O'p'}) = 0 \quad \Rightarrow \quad p \cdot [t \times (Rp')] = 0,$$

with

$$\begin{cases} p = (u, v, 1)^T \\ p' = (u', v', 1)^T \end{cases}$$

Essential Matrix
(Longuet-Higgins, 1981)

$$p^T E p' = 0 \text{ with } E = [t_x]R$$

Two Ways to Compute Essential Matrix

First calibrate the two camera to get intrinsic parameters and pixel coordinate can be mapped to mm.

$$p^T E p' = 0 \text{ with } E = [t_x]R$$

Method 1: Take images with each camera of calibration rig with known 3D coordinates and estimate extrinsic parameters (R, t) and then E

Method 2: The Eight Point Algorithm. Use 8 matching points in images from calibrated camera of unknown scene.
The Eight-Point Algorithm (Longuet-Higgins, 1981)
Much more on multi-view in CSE252B!!

\[\mathbf{p}^T \mathbf{E} \mathbf{p}' = 0 \text{ with } \mathbf{E} = [\mathbf{t} \times \mathbf{R}] \]

\[
\begin{bmatrix}
E_{11} & E_{12} & E_{13} \\
E_{21} & E_{22} & E_{23} \\
E_{31} & E_{32} & E_{33}
\end{bmatrix}
\begin{bmatrix}
u' \\
u \\
1
\end{bmatrix} = 0
\]

- Set \(E_{33} \) to 1
- Use 8 points \((u_i, v_i), i=1..8\)

Solve \(E_{11} \) to \(E_{32} \) --

The Essential Matrix

Epipolar geometry example
Example: converging cameras

courtesy of Andrew Zisserman

Example: motion parallel with image plane

(simple for stereo \rightarrow rectification)
courtesy of Andrew Zisserman
Example: forward motion

The Essential Matrix and Epipolar constraint

\[\mathbf{p}^T \mathbf{E} \mathbf{p}' = 0 \text{ with } \mathbf{E} = [\mathbf{t} \times] \mathbf{R} \]

1. The epipolar constraint is homogenous in \(\mathbf{p}, \mathbf{p}' \) and \(\mathbf{E} \)
2. It is bilinear in \(\mathbf{p} \) and \(\mathbf{p}' \). E.g., for a given value of \(\mathbf{p} \), it is linear in \(\mathbf{p}' \) and vice versa

3. Given a point \(\mathbf{p}' \) in \(\pi' \), the equation of the epipolar line \(\mathbf{l} \) in \(\pi \) is
 \[\mathbf{a}^T \mathbf{p} = 0 \]
 where \(\mathbf{a} = \mathbf{E} \mathbf{p}' \)

4. Given a point \(\mathbf{p} \) in \(\pi \), the equation of the epipolar line \(\mathbf{l}' \) in \(\pi' \) is
 \[\mathbf{b}^T \mathbf{p}' = 0 \]
 where \(\mathbf{b} = \mathbf{E}' \mathbf{p} \)
The Essential Matrix and Epipoles

\[p^T E p' = 0 \text{ with } E = [t_c]R \]

5. \(E e' = 0 \) and \(E^T e = 0 \)
6. The eigenvector of \(E \) corresponding to the zero eigenvalue is the epipole \(e' \)
7. The eigenvector of \(E^T \) corresponding to the zero eigenvalue is the epipole \(e \)
8. \(E \) is singular (determinant is zero & can’t be inverted)
9. \(E \) has two equal non-zero singular

Relation of calibrated and uncalibrated coordinates

\[
\begin{bmatrix}
U \\
V \\
W
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

Rigid Transformation

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

\[
H = \Pi_p M_c
\]

Mapping from 3D to Image Coordinates

\[q = H \Pi_p M_c p \]

Mapping from 3D to calibrated coordinates used with Essential Matrix

\[p_c = \Pi_p M_c p \]

Mapping from calibrated coordinates to image coordinates

\[q = H p_c \]

Mapping from image coordinates to calibrated coordinates

\[p_c = H^{-1} q \]
The Fundamental Matrix

The epipolar constraint is given by: \(p^T Ep' = 0 \) with \(E = [t \times]R \)

where \(p \) and \(p' \) are calibrated homogenous in the two images.

The relationship between the calibrated coordinates \((p, p')\) and uncalibrated coordinates \((q, q')\) can be expressed as \(p = H^{-1}q \) and \(p' = H'^{-1}q' \).

Therefore, we can express the epipolar constraint as:

\[
\begin{align*}
 p^T E p' &= 0 \\
 (H^{-1}q)^T E (H'^{-1}q') &= q^T ((H^{-1})^T EH'^{-1}) q' \\
 q^T F q' &= 0
\end{align*}
\]

where \(F = (H^{-1})^T EH'^{-1} \) is called the Fundamental Matrix.
Can be solved using 8 point algorithm WITHOUT CALIBRATION

Epipolar constraint for Uncalibrated Cameras

\[q^T F q' = 0 \]

1. The epipolar constraint is homogenous in \(q, q' \) and \(F \)
2. It is bilinear in \(q \) and \(q' \). E.g., for a given value of \(q \), it is linear in \(q' \) and vice versa

![Diagram](image)

3. Given a point \(q' \) in \(\pi' \), the equation of the epipolar line \(l \) in \(\pi \) is \(a^T q = 0 \)

where \(a = F q' \)

4. Given a point \(p \) in \(\pi \), the equation of the epipolar line \(l' \) in \(\pi' \) is \(b^T q' = 0 \)

where \(b = F^T q \)
The Essential Matrix and Epipoles

5. \(\mathbf{F}e' = 0 \) and \(\mathbf{F}^T \mathbf{e} = 0 \)
6. The eigenvector of \(\mathbf{F} \) corresponding to the zero eigenvalue is the epipole \(e' \)
7. The eigenvector of \(\mathbf{F}^T \) corresponding to the zero eigenvalue is the epipole \(e \)
8. \(\mathbf{F} \) is singular (determinant is zero & can’t be inverted)

Stereo Vision Outline

- Offline: Calibrate cameras & determine
B “epipolar geometry”
- Online
 1. Acquire stereo images
 2. Rectify images to convenient epipolar geometry
 3. Establish correspondence
 4. Estimate depth
Rectification
Given a pair of images, transform both images so that epipolar lines are scan lines.

Rectification
Under perspective projection, the mapping from a plane to a plane is given by a projective transformation (aka homography).

\[
\begin{bmatrix}
 x_L \\
y_L \\
w_L
\end{bmatrix}
= H_L
\begin{bmatrix}
u_L \\
v_L \\
1
\end{bmatrix}
\Rightarrow
(u_L, v_L)
\]

\[
\begin{bmatrix}
x_L \\
y_L
\end{bmatrix}
\Rightarrow
(x_L, y_L)
\]
Rectification

Under perspective projection, the mapping from a plane to a plane is given by a projective transformation (aka homography).

\[
\begin{bmatrix}
 x_L \\
 y_L \\
 w_L
\end{bmatrix} = H_L \begin{bmatrix}
 u_L \\
 v_L \\
 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_R \\
 y_R \\
 w_R
\end{bmatrix} = H_R \begin{bmatrix}
 u_R \\
 v_R \\
 1
\end{bmatrix}
\]

Two images – Two homographies H_L, H_R

Image pair rectification

Simplify stereo matching by warping the images

Apply projective transformation so that epipolar lines correspond to horizontal scanlines

H_L should map epipole e to $(1,0,0)$, a point at infinity

H_L should also minimize image distortion

Note that rectified images usually not rectangular

See Text for complete method
Rectification
Given a pair of images, transform both images so that epipolar lines are scan lines.

Input Images

Rectified Images
Rectification