Introduction

Computer Vision I
CSE 252A
Lecture 1

• We’ll start with some introductory material
• And end with
 – Syllabus
 – Organizational materials
 – Wait list

What is computer vision?

Done?

What is Computer Vision?

• Trucco and Verri: Computing properties of the 3-D world from one or more digital images
• Sockman and Shapiro: To make useful decisions about real physical objects and scenes based on sensed images
• Ballard and Brown: The construction of explicit, meaningful description of physical objects from images.
• Forsyth and Ponce (Text): Extracting descriptions of the world from pictures or sequences of pictures”

Why is this hard?

What is in this image?
1. A hand holding a man?
2. A hand holding a mirrored sphere?
3. An Escher drawing?

• Interpretations are ambiguous
• The forward problem (graphics) is well-posed
• The “inverse problem” (vision) is not
Underestimates

“640K ought to be enough for anybody.”
– Bill Gates, 1981

• “... in three to eight years we will have a machine with the general intelligence of an average human being ... The machine will begin to educate itself with fantastic speed. In a few months it will be at genius level and a few months after that its powers will be incaulable.”
– Marvin Minsky, Life Magazine, 1970

What do you see?

- Changing viewpoint
- Moving light source
- Deforming shape

What was happening

- Changing viewpoint
- Moving light source
- Deforming shape

Should Computer Vision follow from our understanding of Human Vision?

Yes & No

1. Who would ever be crazy enough to even try creating machine vision?
2. Human vision “works”, and copying is easier than creating.
3. Secondary benefit – in trying to mimic human vision, we learn about it.

1. Why limit oneself to human vision when there is even greater diversity in biological vision
2. Why limit oneself to biological vision when there may be greater diversity in sensing mechanism?
3. Biological vision systems evolved to provide functions for “specific” tasks and “specific” environments. These may differ for machine systems
4. Implementation – hardware is different, and synthetic vision systems may use different techniques/methodologies that are more appropriate to computational mechanisms

Hermann Grid

Scan your eyes over the figure. Do you see the gray spots at the intersections? Stare at one of them and it will disappear.
How many red X’s are there? Raise your hand when you know.

Ubiquitous Vision

- Digital video has become really cheap.
- It’s widely embedded in cell phones, cars, games, etc.
- 99.9% of digitized video isn’t seen by a person.
- That doesn’t mean that only 0.1% is important!
- And there’s an enormous amount of image and video content on the internet…

Applications: touching your life

- Optical Character Recognition
- Football
- Movies
- Surveillance
- HCI – hand gestures
- Aids to the blind
- Face recognition & biometrics
- Road monitoring
- Industrial inspection
- Virtual Earth; street view
- Robotic control
- Autonomous driving
- Space: planetary exploration, docking
- Medicine – pathology, surgery, diagnosis
- Microscopy
- Military
- Remote Sensing
- Digital photography
- Google Goggles
- Video games
Earth viewers (3D modeling)

Optical character recognition (OCR)

See also:

• Google Maps and Google Earth
• VarCity – ETH Zurich
• Building Rome in a Day

Digit recognition, AT&T labs
http://www.research.att.com/~yann/

Or more recent, see blog post about Dropbox OCR

Technology to convert scanned docs and images to text

• If you have a scanner, it probably came with OCR software

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Handwriting recognition

Visit the site, set in the store and buy some snow shoes.

Scene Text: Text Recognition in the Wild

Face detection

Scene Text: Text Recognition in the Wild

COCO-Text
A large-Scale Scene Text Dataset
https://bgshih.github.io/cocotext/

• Digital cameras, smart phones, Facebook, Google Photos, etc.

Face recognition

Who is she?
Vision-based biometrics

“How the Afghan Girl was Identified by Her Iris Patterns” Read the story

Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics
“A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk you are assured to get paid for it…”

Amazon Go

1. Turn-style entry. Consumer scans in with Amazon App on smartphone
2. Consumer goes around the store, picks up items, adds to bag, shops like normal
3. Consumer exits

Login without a password...

iPhone X

Fingerprint scanners on laptops, mice, other devices

Object recognition in mobile phones

– Point & Find, Nokia
– SnapTell.com (now Amazon)
– Mobile Acuity
– Google Photos
– Apple Photos

Leafsnap.com -> Dogsnap -> Birdsnap
Special effects: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Special effects: motion capture

- Vicon

Sports

Sportsvision first down line

Nice explanation on www.howstuffworks.com

Augmented Reality

- AR Toolkit
- Blippar
- Magic Leap
- Microsoft Holens
Smart cars

- Mobileye
 - Vision systems currently in high-end BMW, GM, Volvo models

Autonomous Cars

http://www.youtube.com/watch?v=cdgQpa1pUUE

Vision-based interaction (and games)

Nintendo Wii has camera-based IR tracking built in.

Xbox Kinect

Playstation game: a Disney Epcot

3D sensors

NASA's Mars Exploration Rover Spirit captured this westward view from atop a low plateau, where Spirit spent the closing months of 2007.

Vision in space

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Robot Vision on Mars" by Matthies et al.
Robotics

First person vision

Medical imaging

Molecular Reconstruction from Cryo-electron Microscope Images

Current state of the art

- You just saw examples of current systems.
 - Many of these are less than 5 years old
- This is a very active research area and rapidly changing
 - Many new applications in the next 5 years
- To learn more about vision applications and companies
 - David Lowe maintained a list of vision companies, until 2015 …
How are images understood?

Visual cues
- Variation in appearance in multiple views
 - stereo
 - motion
- Shading & highlights
- Shadows
- Contours
- Texture
- Blur
- Geometric constraints
- Prior knowledge

An example of a cue:
Shading and lighting
Shading as a result of differences in lighting is

1. A source of information
2. An annoyance

Illumination Variability
An annoyance

"The variations between the images of the same face due to illumination and viewing direction are almost always larger than image variations due to change in face identity."

-- Moses, Adini, Ullman, ECCV ‘94

How do we understand shading?
(An idealization of “engineering” research)

1. Construct a model of the domain (usually mathematical, based on physics).
2. Prove properties of that model to better understand the model and opportunities of using it.
3. Develop algorithms to solve a problem that is correct under the model.
4. Implement & evaluate it.
5. Question assumptions of the model & start all over again.

1. Image Formation

At image location \((x,y)\) the intensity of a pixel \(I(x,y)\) is

\[I(x,y) = a(x,y) \cdot n(x,y) \cdot s \]

where
- \(a(x,y)\) is the albedo of the surface projecting to \((x,y)\).
- \(n(x,y)\) is the unit surface normal.
- \(s\) is the direction and strength of the light source.

2. A property:
3-D Linear subspace

The set of images of a Lambertian surface with no shadowing is a subset of 3-D linear subspace.

\[\{ x | x = Bs, \forall s \in \mathbb{R}^3 \} \]

where \(B\) is a \(n\) by 3 matrix whose rows are product of the surface normal and Lambertian albedo.
3.4: An implemented algorithm: Relighting

Single Light Source

5. Question Assumptions

- Many objects are not Lambertian (specular, complex reflectance functions).

Or can we learn about these variations from data

- Google FaceNet trained on hundreds of millions of cropped face images
- 140 Million Parameters
- 1.6B Flops

[Schroff, Kalenichenko, Philbin, 2015]

Related Fields

Deep Learning

Four Rs of computer vision

- Reprojection
 - Rendering a scene and features from a different view, under different illumination, under different surface properties, etc.
- Reconstruction
 - Multiple view geometry, structure from motion, shape from X (where X is texture, shading, contour, etc.), etc.
- Registration
 - Tracking, alignment, optical flow, correspondence, etc.
- Recognition
 - Recognizing objects, scenes, events, etc.
Rudiments: The implied fifth R

- image filtering
- interest point detection
- edge detection
- probability
- statistics
- linear algebra
- projective geometry
- optics
- Fourier analysis
- sampling
- algorithms
- photometry
- physics of color
- human vision
- psychophysics
- performance evaluation

Part I of Course: The Physics of Imaging

- How images are formed
 - Cameras
 - What a camera does
 - Projection Models (Projective spaces, etc.)
 - How to tell where the camera was located
 - Light
 - How to measure light
 - What happens to light at surfaces
 - How the brightness values we see in images are determined
 - Color
 - The underlying mechanisms of color
 - How to describe it and measure it

Cameras, lenses, and sensors

- Pinhole cameras
- Lenses
- Projection models
- Geometric camera parameters

Figure 1.10 The first photograph on record, & table service, obtained by Nicéphore Niepce in 1822. Cygnet—Verey—Taylor.

A real camera … and its model

Lighting & Photometry

- How does measurement relate to light energy?
- Sensor response
- Light sources
- Reflectance
Part II: Early Vision in One Image

- Representing small patches of image
- Noise
- Filtering
- Edge Detection
- Corner Detection
- Texture
- Segmentation

Segmentation

- Which image components “belong together”?
 - Belong together ≅ lie on the same object
 - Cues
 - similar color
 - similar texture
 - not separated by contour
 - form a suggestive shape when assembled

Boundary Detection

Part 3: Reconstruction from Multiple Images

- Photometric Stereo
 - What we know about the world from lighting changes.
- The geometry of multiple views
- Stereopsis
 - What we know about the world from having two eyes
- Structure from motion
 - What we know about the world from a moving camera
Video-Motion Analysis

- Where “things” are moving in image – segmentation.
- Determining observer motion (egomotion)
- Determining scene structure
- Tracking objects
- Understanding activities & actions

Visual Tracking

Main Challenges
1. 3-D Pose Variation
2. Occlusion of the target
3. Illumination variation
4. Camera jitter
5. Expression variation etc.

[Ho, Lee, Kriegman]

Tracking

(www.brickstream.com)

Tracking

Tracking

Tracking
Recognition Challenges

- **Within-class variability**
 - Different objects within the class have different shapes or different material characteristics
 - Deformable
 - Articulated
 - Compositional

- **Pose variability:**
 - 2-D Image transformation (translation, rotation, scale)
 - 3-D Pose Variability (perspective, orthographic projection)

- **Lighting**
 - Direction (multiple sources & type)
 - Color
 - Shadows

- **Occlusion** – partial
- **Clutter in background** -> false positives

Recognition Example: Face Detection:
Classify face vs. non-face

Why is Face Recognition Hard?
Many faces of Madonna

Scene Interpretation
About the class

- Class web page and syllabus are at:
 - http://cseweb.ucsd.edu/classes/fa18/cse252A-a/
- HW0: "Image manipulation in Python" to be posted to webpage by next Tuesday
- Read:
 - Chapters 1 & 2 of Forsyth & Ponce
 - Chapter 1 of Szeliski (Optional)

Text

- The primary course text is:

- The secondary text is: Rick Szeliski’s book
 Computer Vision: Algorithms and Applications; Printed copy available, also
 sofctcopy online http://szeliski.org/Book/

Primary Text

Secondary Text

About the class

Academic Integrity Policy

Integrity of scholarship is essential for an academic community. The University expects that both faculty and students will honor this principle and in so doing protect the validity of University intellectual work. For students, this means that all academic work will be done by the individual to whom it is assigned, without unauthorized aid of any kind.
Collaboration Policy

It is expected that you complete your academic assignments on your own and in your own words and code. The assignments have been developed by the instructor to facilitate your learning and to provide a method for fairly evaluating your knowledge and abilities (not the knowledge and abilities of others). So, to facilitate learning, you are authorized to discuss assignments with others; however, to ensure fair evaluations, you are not authorized to use the answers developed by another, copy the work completed by others in the past or present, or write your academic assignments in collaboration with another person. If the work you submit is determined to be other than your own, you will be reported to the Academic Integrity Office for violating UCSD's Policy on Integrity of Scholarship.

Wait List

- Number of enrolled students is limited by
 - Size of room
- General advice
 - Wait for as long as you can
- Concurrent enrollment (Extension) students have lowest priority

- And, if you are going to drop the class, please officially drop it to make room for others

Facebook Recruiting Monday, Oct. 1

https://splashhat.com/sites/view/ucsdlabtour.splashhat.com