1. Consider a relation R with attributes $ABCD$ and a decomposition $\rho = \{AB, BC, CD\}$ for R. Show that ρ has lossless join with respect to $F = \{B \rightarrow A, C \rightarrow B\}$.

2. Let R be a relation over attributes $ABCDE$, and

 $$F = \{AB \rightarrow C, C \rightarrow E, E \rightarrow C, C \rightarrow D, AB \rightarrow E\}.$$

 Show that the decomposition $\rho = \{ABC, ADE, CE\}$ is dependency preserving with respect to F.

3. Minimize the set of fds

 $$G = \{A \rightarrow C, AB \rightarrow C, C \rightarrow DI, CD \rightarrow I, EC \rightarrow AB, EI \rightarrow C\}.$$

4. Suppose we have a database for an investment firm, consisting of the following attributes: B (broker), O (office of a broker), I (investor), S (stock), Q (quantity of stock owned by an investor), and D (dividend paid by a stock), with the following functional dependencie: $S \rightarrow D, I \rightarrow B, IS \rightarrow Q, B \rightarrow O$.

 (a) Find a key for the relation R over attributes $BOSQID$.

 (b) How many keys does R have? Prove your answer.

 (c) Find a lossless join decomposition of R into Boyce-Codd Normal Form.

 (d) Find a decomposition of R into Third Normal Form, having lossless join and preserving dependencies.

5. Let R be a relation over attributes $ABCD$ and $F = \{AB \rightarrow CD, D \rightarrow C, B \rightarrow C\}$.

 (a) Find a BCNF decomposition for R and F that has lossless join.

 (b) Is the decomposition found in (a) dependency preserving with respect to F? If not, go to (c).

 (c) Find a 3NF decomposition for R and F that has lossless join and is dependency preserving.