Lecture 19 Overview

- Dealing with non-responsive traffic
 - Token bucket
 - Policing and shaping

- Scheduling
 - (Weighted) Fair Queuing
Non-responsive Senders

1 UDP (10 Mbps) and 31 TCPs sharing a 10 Mbps line

UDP (#1) - 10 Mbps
TCP (#2)
TCP (#32)

TCP (#2)
TCP (#32)

Bottleneck link (10 Mbps)
UDP vs. TCP

Throughput (Mbps)

Flow Number

CSE 123 – Lecture 19: Traffic Management
Token Bucket Basics

- Parameters
 - r – average rate, i.e., rate at which tokens fill the bucket
 - b – bucket depth (limits size of burst)
 - R – maximum link capacity or peak rate (optional parameter)
- A bit can be transmitted only when a token is available
Traffic Policing

- Drop packets that don’t meet user profile
- Output limited to average of r bps and bursts of b

![Diagram showing traffic policing process]

Packet input → Test if token

- Token: Proceed
- No token: Drop

r bps

User Profile (token bucket)

Packet output
Traffic Shaping

- Shape packets according to user profile
- Output limited to average of r bps and bursts of b

Queue, Drop on overflow
Packet input

Wait for token

User Profile (token bucket)

Packet output
Shaping Example

- $r = 100$ Kbps; $b = 3$ Kb; $R = 500$ Kbps

(a) 3 Kb packet arrives at $T = 0$.

(b) 2.2 Kb transmitted at $T = 2$ ms.
 \[b = 3$ Kb $- 1$ Kb $+ 2$ ms $* 100$ Kbps $= 2.2$ Kb \]

(c) 2.4 Kb packet arrives at $T = 4$ ms.

(d) $T = 10$ ms: packet needs to wait until enough tokens are in the bucket.

(e) 0.6 Kb transmitted at $T = 16$ ms.
Scheduling

● So far we’ve done flow-based traffic management
 ◆ Limit the rate of one flow regardless of the load in the network

● In general, need scheduling
 ◆ Dynamically allocate resources when multiple flows compete
 ◆ Give each “flow” (or traffic class) own queue (at least theoretically)

● Weighted fair queuing
 ◆ Proportional share scheduling
 ◆ Schedule round-robins among queues in proportion to some weight parameter
Our Previous Example

1 UDP (10 Mbps) and 31 TCPs sharing a 10 Mbps line
UDP vs. TCP w/FIFO
TCP vs. UDP w/Fair Queuing

![Graph showing throughput comparison between TCP and UDP flows with fair queuing.](image-url)

Throughput (Mbps) vs. Flow Number

Flow Number

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

TCP and UDP flows with fair queuing comparison.
(Weighted) Fair Queuing

Flow 1

Flow 2

Flow n

I/P

O/P
Maintain a queue for each flow
- What is a flow?

Implements **max-min fairness**: each flow receives \(\min(r_i, f) \), where
- \(r_i \) – flow arrival rate
- \(f \) – link fair rate (see next slide)

Weighted Fair Queuing (WFQ) – associate a weight with each flow to divvy bandwidth up non-equally
Fair Rate Computation

- If link congested, compute f such that

\[\sum_{i} \min(r_i, f) = C \]

\[f = 4: \]
\[\min(8, 4) = 4 \]
\[\min(6, 4) = 4 \]
\[\min(2, 4) = 2 \]
Another Example

- Associate a weight w_i with each flow i
- If link congested, compute f such that

$$\sum_i \min(r_i, f \times w_i) = C$$

\[
\begin{align*}
(w_1 = 3) & \quad 8 \\
(w_2 = 1) & \quad 6 \\
(w_3 = 1) & \quad 2 \\
\end{align*}
\]

\[
\begin{align*}
f = 2: \\
\min(8, 2 \times 3) & = 6 \\
\min(6, 2 \times 1) & = 2 \\
\min(2, 2 \times 1) & = 2
\end{align*}
\]

Flow i is guaranteed to be allocated a rate $\geq w_i \times C / (\sum_k w_k)$

If $\sum_k w_k \leq C$, flow i is guaranteed to be allocated a rate $\geq w_i$
For next time...

- HW 3 Due Friday
- Read P&D 6.3-4
- Keep going on Project 2