Content of this lecture

- Course information (personnel, policy, schedule, misc.)
- What is OS? What does it do?
- History of OS
- Summary
Some Survey

- How many CS majors vs. ECE/others?
- How many know Java?
- Why are you taking this class?
About this course…

Principles
- System concepts
- OS design
- Some theory
- Rationale
- Practice

Goals
- Understand OS decisions
- Basis for future learning
- Get hands dirty
Why are you here?

- Fulfill the requirement
- Prerequisite for other courses
 - Network
 - Distributed systems
 - Real-time systems
 - Multimedia systems
- Future plans
 - Graduate schools for CS
 - Employment (interview 😊)
What does the class cover?

- Introduce you to operating system concepts
 - Hard to use a computer without interacting with OS
 - Understanding the OS makes you a more effective programmer

- Cover important systems concepts in general
 - Caching, concurrency, memory management, I/O, protection

- Teach you to deal with larger software systems
 - Programming assignments much larger than many courses
 - Warning: Many people will consider course very hard
 - In past, majority of people report 15 hours/week
Why Study OS?

- Operating systems are a maturing field
 - Most people use a handful of mature OSes
 - Hard to get people to switch operating systems
 - Hard to have impact with a new OS

- High-performance servers are an OS issue
 - Face many of the same issues as OSes

- Resource consumption is an OS issue
 - Battery life, radio spectrum, etc.

- Security is an OS issue
 - Hard to achieve security without a solid foundation

- New “smart” devices need new OSes

- Web browsers increasingly face OS issues
OS: Love or Hate Relationship

● After finishing CSE120
 – Some students: *OS is so cool. Now I finally understand how things run on computers 😊*
 – Some students: *Ur, it is so messy, so complicated 😞*

● So what does it tell you about CSE120?
 – It is messy, more complex than other classes
 – But it can open up a new world for you
Who am I?

- Yuanyuan (YY) Zhou

- **Research**: operating systems, software reliability, computer architecture, storage systems

- **Brief BIO**
 - Ph.D, Princeton, 2000
 - NEC Research, 2000-2002
 - UIUC, Professor, 2002-2009 (mostly teach OS)
 - Have graduated 19 Ph.Ds, six of them are now professors at:
 - U. of Chicago, UIUC, John Hopkins, Waterloo, Toronto, Ohio-State (also do research on OS & teach OS 😊)
 - Co-founded 3 companies (2 were acquired)
 - Make me probably the most “industrial” professor in CSE
A little bit personal

- Two soccer teenagers and one spoiled dog
 - One of them is a college sophomore
You are advised to drop my class

- You have insufficient pre-requisite
 - CSE 30 (Computer Organization and Systems Programming),
 - CSE 101 (Design and Analysis of Algorithms)
 - CSE100 (data structures)
 - CSE 70 or CSE 110 (Software Engineering)

- You want an easy class
 - You don’t care about learning or your future job search

- You cannot understand or tolerate my accent 😊
Personnel

Instructor:
- Yuanyuan Zhou (yyzhou@cs.ucsd.edu)
- Office hours (EBU3B 3210):
 - Tue/Thu 9:45-10:45am (or by appointment)

5 Teaching Assistants
- Bingyu Shen (byshen@eng.ucsd.edu)
- Yudong Wu (yuw466@eng.ucsd.edu)
- Vasudev Patel (vap014@ucsd.edu)
- Zhiyao Yan (zhy038@ucsd.edu)
- Gustavo Umbelino (gumbelin@ucsd.edu)

5 Tutors

Lab hours: Google calendar view on class website and piazza

Discussion sections (you can attend either one)
Class Information

- **Textbook:**
 Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
 Operating Systems: Three Easy Pieces Version 0.91 (Online version is OK too. You can click the chapters in the schedule on class website)

- **Class Website**
 http://cseweb.ucsd.edu/classes/fa18/cse120-a/

- **Slides, schedule, grading policy, etc.** is available on the class web page
Course Information

- Course material taught through class lectures, textbook readings, and handouts
- Course assignments
 - Four large programming projects
 - Homework (for exam preparation)
- Discussion sections for asking questions on
 - Project, lecture material or homework
 - Clarification and supplementary materials
- Piazza (a link from class web site)
Projects

● Nachos is an instructional OS
 - It is a user-level operating system and a machine simulator
 - Will become abundantly clear (or not so clear) very soon

● Programming environment will be Java on Unix (Linux)
 - The projects will require serious time commitments
 ● waiting until the last minute is not an option

● You will do four projects using Nachos
 - Installation & Submission (individual)
 - Concurrency and synchronization
 - Multiprogramming
 - Virtual memory or FS

● You will work in groups of 1-3 on project 1-3
 - Start looking for partners now

CSE120 - Operating Systems, Yuanyuan Zhou
Labs

- We will use the labs in the CSE basement
 - Linux running on PCs
- You can also use your home machine
 - The same project source will work on Linux (but not Windows)
 - Note: We will test and grade on lab machines
 - Be sure to test your projects there as well
Homeworks

- 4 homeworks to reinforce lecture material and help you preparing for exams

- As long as you submit and write some answer related to the question, you get FULL credit
 - Your choice: you can spend the time to learn something, or you can just waste it
 - Why? Avoid penalizing students who do their work without cheating (but get to taken points off)

CSE120 - Operating Systems, Yuanyuan Zhou

9/28/18
Exams

- **Midterm:** Oct 30th, lecture time
 - Covers first half of class + something related to projects
 - So do your project and do NOT copy!
 - Each session has different midterm questions

- **Final:** Covers second half of class + synchronizations from first part

- No makeup exams
 - Unless dire circumstances

- No cheating sheet is allowed
Grades

● Homework: 6% (4 homeworks)
● Midterm: 28%
 - Containing around 5-10% of material related to projects
● Final: 33%
 - Containing around 5-10% of material related to projects
● Projects: 33%
Re-grading policy

- Students have 1 week (after the grade for a project/exam is released) to request for re-grading.

- After the re-grading period, no re-grading request will be granted for the project/exams.
Cheating Policy

- Academic integrity
- Your work in this class must be your own - we have a zero tolerance policy towards cheating of any kind and any student who cheats will get a failing grade in the course and reported to campus at the end of the quarter
- Both the cheater and the student who aided the cheater will be held responsible for the cheating
- In 2016, we have caught 10% students cheating (CSE is serious on this---has received the campus award for Academic Integrity)
How NotTo Pass CSE 120

● Do not come to lecture
 – It’s nice out, the slides are online, and the material is in the book anyway
 – TRUTH: Lecture material is the basis for exams

● Copy other people’s projects
 – First, it is cheating.
 – And yes, we do have tools to check for cheating in projects.
 – Well, how can you answer the questions in midterms or final exams?
How Not To Pass (2)

- Do not ask questions in lecture, office hours, or email
 - It’s scary, I don’t want to embarrass myself
 - Asking questions is the best way to clarify lecture material at the time it is being presented

- Wait until the last couple of days to start a project
 - We’ll have to do the crunch anyways, why do it early?
 - The projects cannot be done in the last few days
 - Repeat: The projects cannot be done in the last few days
 - Each quarter groups learn that starting early meant finishing all of the projects on time…and some do not
Office Hours---Shishi... a secret

- You can talk about many things during my office hours
 - Career, job search, startups

- My office hours for future quarters are always open to you
Lab Hours

- 4 TAs and 4 Tutors will provide lab hours
 - Will be posted on class website
 - Will aim to provide some lab hours every day including weekends
 - Will use autograder in the lab to answer questions

- Leverage it!
Any Questions?

- Before we start …

- Do you think this will be a hard class?
What Is an OS?

Anyone?

What does it do?

Give me a few names of an OS?
 - For desktops?
 - For smart phones?

Is Virtual Machine an OS?
Is Android an OS?
Is Java Virtual Machine (JVM) an OS?
What Is an OS?

“Code” that:

- Sits between programs & hardware
- Sits between different programs
- Sits between different users

But what does it do?

to provide an orderly and controlled allocation of the processors, memories and I/O devices among the various programs competing for them

Real life analogy:

- Government?
- Mom
OS is...

- The operating system is the software layer between user applications and the hardware.

- The OS is “all the code that you didn’t have to write” to implement your application.
OS and Hardware

- The OS abstracts/controls/mediates access to hardware resources (what resources?)
 - Computation (CPUs)
 - Volatile storage (memory) and persistent storage (disk, etc.)
 - Communication (network, modem, etc.)
 - Input/output devices (keyboard, display, printer, camera, etc.)

- The OS defines a set of logical resources (objects) and a set of well-defined operations on those objects (interfaces)
 - Physical resources (CPU and memory)
 - Logical resources (files, programs, names)
Benefits to Applications

● Simpler
 - no tweaking device registers

● Device independent
 - all network cards look the same

● Portable
 - Across
 Windows95/98/ME/NT/2000/XP/Vista/Windows 7

● Worry less about interference from other applications
What does an OS do?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

Services
- Abstraction
- Simplification
- Convenience
- Standardization

Makes computers seem simpler
What Is an OS?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

Finite resources
Competing demands

Examples:
- CPU
- Memory
- Disk
- Network

Limited budget, Land, Oil, Gas,

Linux or Windows? Democrat or Republic?
What Is an OS?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

You can’t hurt me
I can’t hurt you

Implies some degree of safety & security
What Is an OS?

Resources
- Allocation
- Protection
- Reclamtion
- Virtualization

The OS giveth
- Voluntary at run time
- Implied at termination
- Involuntary
- Cooperative

The OS taketh away

Government
- Income Tax

9/28/18
CSE120 - Operating Systems, Yuanyuan Zhou
What Is an OS?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

illusion of infinite, private resources

Memory versus disk

Timeshared CPU

More extreme cases possible (& exist)

Social security

Government
Some Questions to Ponder

- What is part of an OS? What is not? Is the window system part of an OS? Java?

- Popular OSes today are Windows, Linux, and OS X
 - How different/similar do you think these OSes are?

- Somewhat surprisingly, OSes change all of the time
 - Consider the series of releases of NT, Linux, OS X…
 - What are the drivers of OS change?
 - New hardware, new applications

- What are the most compelling issues facing OSes today?
The Operating System Zoo

- Mainframe operating systems
- Server operating systems
- Multiprocessor operating systems
- Personal computer operating systems
- Real-time operating systems
- Embedded operating systems
- Mobile/Pads operating systems
- IoT (internet of things) operating systems
- Cloud operating systems
Historical Comparison

<table>
<thead>
<tr>
<th></th>
<th>Mainframe</th>
<th>Mini</th>
<th>Micro/Mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>System $/ Worker Salary</td>
<td>10:1 – 100:1</td>
<td>10:1 – 1:1</td>
<td>1:10-1:1000</td>
</tr>
<tr>
<td>Goal</td>
<td>System utilization</td>
<td>Overall cost</td>
<td>Productivity</td>
</tr>
<tr>
<td>Target</td>
<td>Capacity</td>
<td>Features</td>
<td>Ease of Use</td>
</tr>
</tbody>
</table>
Summary

- Course overview
- Policy and requirement
- What is OS?
- OS history

- Next lecture: system overview (chapter 1)
After this lecture…

- Browse the course web
 - http://cseweb.ucsd.edu/classes/fa18/cse120-a/

- Start reading Nachos (online)

- Discussion sections (DON’T MISS them)
 - 1st week: Tutorial on GitHub
 - 2nd week: Tutorial on Nachos

- Start thinking about partners for project groups

- See me up front if you have any questions
- Let the fun begin!