Minimum Spanning Trees
and Union-Find

CSE 101: Design and Analysis of Algorithms
Lecture 7
CSE 101: Design and analysis of algorithms

• Minimum spanning trees and union-find
 – Reading: Section 5.1
• Quiz 1 is today, last 40 minutes of class
• Homework 3 is due Oct 23, 11:59 PM
How to implement Kruskal’s algorithm

• Sort edges by weight, go through from smallest to largest, and add if it does not create cycle with previously added edges

• How do we tell if adding an edge will create a cycle?
 – Naive: depth-first search every time
 • Need to test for every edge, m times
 – Depth-first search on a forest: only edges added to minimum spanning tree
 • As such, each depth-first search is $O(n)$
 • Total time $O(nm)$

$n = |V|$
$m = |E|$
Disjoint sets data structure (DSDS)

- Main complication: want to check if u is connected to v efficiently
- Tree T divides vertices into disjoint sets of connected components
- u is connected to v if they are in the same set
- Adding e to T merges the set containing u with the set containing v
- So we need a data structure that
 - Represents a partition of a set V into disjoint subsets
 - We will pick one element L from each subset to be the “leader” of a subset, in order to give the subsets distinct names
 - Has an operation $\text{find}(u)$ that returns the leader of u’s set
 - Has an operation $\text{union}(u,v)$ that replaces the two sets containing u and v with their union
Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
 Input: undirected connected graph G with edge weights w
 Output: a set of edges X that defines a minimum spanning tree of G
 for all v in V
 makeset(v)
 X = { }
 Sort the edges in E in increasing order by weight
 For all edges (u,v) in E
 if find(u) ≠ find(v):
 Add edge (u,v) to X
 union(u,v)

Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
 Input: undirected connected graph G with edge weights w
 Output: a set of edges X that defines a minimum spanning tree of G
 for all v in V
 makeset(v)
 X = { }
 Sort the edges in E in increasing order by weight
 For all edges (u,v) in E until X is a connected graph
 if find(u) ≠ find(v):
 Add edge (u,v) to X
 union(u,v)
Trees

• Definition: A tree is an undirected connected graph with no cycles

• An undirected connected graph is a tree if and only if removing any edge results in two disconnected graphs

• An undirected connected graph with n vertices is a tree if and only if it has n - 1 edges

• An undirected connected graph is a tree if and only if there is a unique path between nodes
Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
 Input: undirected connected graph G with edge weights w
 Output: a set of edges X that defines a minimum spanning tree of G
 for all v in V
 makeset(v)
 X = { }
 Sort the edges in E in increasing order by weight
 For all edges (u,v) in E until |X| = |V| - 1
 if find(u) ≠ find(v):
 Add edge (u,v) to X
 union(u,v)
Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
 Input: undirected connected graph G with edge weights w
 Output: a set of edges X that defines a minimum spanning tree of G
 for all v in V
 makeset(v) |V| * makeset
 X = {} X = \{ \}
 Sort the edges in E in increasing order by weight sort(|E|)
 For all edges (u,v) in E until |X| = |V| - 1 2 * |E| * find
 if find(u) \neq find(v):
 Add edge (u,v) to X
 union(u,v) (|V| - 1) * union
Kruskal’s algorithm, DSDS subroutines

- **makeset(u)**
 - Creates a set with one element, u

- **find(u)**
 - Finds the set to which u belongs

- **union(u,v)**
 - Merges the sets containing u and v

- **Kruskal’s algorithm**
 \[|V| \times \text{makeset} + 2 \times |E| \times \text{find} + (|V| - 1) \times \text{union} + \text{sort}(|E|) \]
DSDS, leader version

• Keep an array \texttt{leader(u)} indexed by element
• In each array position, keep the leader of its set
• \texttt{makeset(u)}: \texttt{leader(u)} = \texttt{u}
• \texttt{find(u)}: return \texttt{leader(u)}
• \texttt{union(u,v)}: set \texttt{leader(x)} = \texttt{leader(u)}
Example: DSDS, leader version

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4
Example: DSDS, leader version

(A,D) = 1
(E,G) = 1
(A,B) = 2
(A,C) = 2
(B,C) = 2
(B,E) = 2
(D,G) = 2
(D,E) = 3
(E,F) = 4
(F,G) = 4
DSDS, leader version

- Keep an array leader(u) indexed by element
- In each array position, keep the leader of its set
- makeset(v): leader(u) = u, O(1)
- find(u): return leader(u), O(1)
- union(u,v): For each array position, if it is currently leader(v), then change it to leader(u). O(|V|)

- Kruskal’s algorithm
 \[|V| * \text{makeset} + 2 * |E| * \text{find} + (|V| - 1) * \text{union} + \text{sort}(|E|) \]
 \[= |V| * O(1) + 2 * |E| * O(1) + (|V| - 1) * O(|V|) + \text{sort}(|E|) \]
 \[= O(|V|^2) \]
A more efficient implementation

• We want to optimize DSDS for other uses as well
• And it’s fun (right?)
DSDS, directed trees with ranks version

• Each set is a rooted tree, with the vertices of the tree labeled with the elements of the set and the root the leader of the set

• To find, only need to go up to leader, so just need parent pointer

• To union, point one leader to other
DSDS, directed trees with ranks version

• Vertices of the trees are elements of a set and each vertex points to its parent that eventually points to the root
• The root points to itself
• The root is a convenient representation or name of the set containing it and all of its children
• In addition to the parent pointer of x, $\pi(x)$, each vertex also has a rank that tells you the height of the subtree hanging from that vertex
Directed trees with ranks
Directed trees with ranks

\[
\begin{align*}
\text{rank}(A) &= 1 \\
\text{rank}(B) &= 0 \\
\text{rank}(C) &= 0 \\
\text{rank}(D) &= 2 \\
\text{rank}(E) &= 0 \\
\text{rank}(F) &= 0 \\
\text{rank}(G) &= 1
\end{align*}
\]

\[
\begin{align*}
\pi(A) &= D \\
\pi(B) &= D \\
\pi(C) &= G \\
\pi(D) &= D \\
\pi(E) &= A \\
\pi(F) &= A \\
\pi(G) &= G
\end{align*}
\]
DSDS, directed trees with ranks version

procedure makeset(x)

\[\pi(x) := x \]

rank(x):=0
DSDS, directed trees with ranks version

procedure find(x)
 while (x ≠ π(x)) \text{Goes up parent pointers until root is found}
 x := π(x)
 return x
DSDS, directed trees with ranks version

procedure union(x,y)
 rx:=find(x)
 ry:=find(y)
 if rx=ry then return
 if rank(rx)>rank(ry) then
 \(\pi(ry): = rx \)
 else
 \(\pi(rx): = ry \)
 if rank(rx)=rank(ry) then
 rank(ry):=rank(rx)+1
DSDS, directed trees with ranks version

procedure union(x,y)
 rx:=find(x)
 ry:=find(y)
 if rx=ry then return
 if rank(rx)>rank(ry) then
 π(ry): = rx
 else
 π(rx): = ry
 if rank(rx)=rank(ry) then
 rank(ry):=rank(rx)+1

• To save on runtime, we must keep the heights of the trees short
• As such, union of two ranks points the smaller rank to the bigger rank, that way, the tree will stay the same height
• If the ranks are equal, then it increments one rank and points the smaller to the bigger
 • This is the only way a rank can increase
DSDS, directed trees with ranks version

- union
DSDS, directed trees with ranks version

procedure makeset(x)
 \(\pi(x) := x \)
 rank(x):=0

procedure find(x)
 while \((x \neq \pi(x))\)
 \(x := \pi(x) \)
 return x

procedure union(x,y)
 rx:=find(x)
 ry:=find(y)
 if \(\text{rank}(rx) > \text{rank}(ry) \)
 \(\pi(ry) := rx \)
 else
 if \(\text{rank}(rx) = \text{rank}(ry) \)
 rank(ry):=rank(rx)+1

makeset \(\mathcal{O}(1) \)
find \(\mathcal{O}(\text{height of tree containing } x) \)
union \(\mathcal{O}(\text{find}) \)
Example: DSDS, directed trees with ranks version

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4
Example: DSDS, directed trees with ranks version
Height of tree

• Any root node of rank k has at least 2^k vertices in its tree

• Proof
 – Base Case: a root of rank 0 has 1 vertex
 – Suppose a root of rank k has at least 2^k vertices in its tree. Then, a root of rank k+1 can only be made by unioning 2 roots each of rank k. So, a root of rank k+1 must have at least $2^k + 2^k = 2^{k+1}$ vertices in its tree.
Next lecture

• Greedy algorithms
 – Reading: Kleinberg and Tardos, sections 4.1, 4.2, and 4.3