Max Bandwidth Path and Depth-First Search

CSE 101: Design and Analysis of Algorithms
Lecture 2
CSE 101: Design and analysis of algorithms

• Max bandwidth path and depth-first search
 – Reading: Sections 3.1 and 3.2

• Homework 1 will be assigned today
 – Due Oct 9, 11:59 PM
How to approach problems

- When can we use an algorithm developed for one problem to solve another?
- Modifying algorithms vs. using algorithms in reductions
- Defining problems precisely
Example

• We’ll start with a familiar algorithm (graph search) and try to re-use it for a new problem (max bandwidth path)
Defining problems precisely

• Instance: What is the input?
• Solution type: What form is your output (path, quantity, boolean, etc.)?
• Restrictions: What solution types are allowed?
• Objective: How do you compare which solutions are better than others?
Max bandwidth path

• Graph represents network, with edges representing communication links. Edge weights are bandwidth of link.

What is the largest bandwidth of a path from A to H?
Path

• Definition: A path is a sequence of vertices and edges

\[v_1, e_1, v_2, e_2 \ldots v_{n-1}, e_{n-1}, v_n \]

such that \(e_i = (v_i, v_{i+1}) \)

• The length of a path is the number of edges

• When we say path in this class, we are talking about simple paths, which means no two edges are the same

• Note that a single vertex \(v_1 \) is a trivial path from the vertex to itself
Problem statement

• Instance: Directed graph $G = (V, E)$ with positive edge weights $w(e)$, two vertices $s, t \in V$
• Solution type: A path p in G
• Restriction: The path must go from s to t
• Bandwidth of a path
 \[
 \text{BW}(p) = \min_{e \in p} w(e)
 \]
• Objective: Over all possible paths p between s and t, find the maximum $\text{BW}(p)$
What is the bandwidth of the path in red from A to H?
Re-using algorithms, modification

• Modification: Take an algorithm for a related problem, and change some of the details to match the new problem

• Complications: Does it actually solve the new problem? Is it as fast as the original algorithm?

• To answer these questions, we need to go back to the proof of correctness and time analysis, to see if the analogous statements are still true
Re-using algorithms, reduction

- Reduction: Use an algorithm for a related problem without changes, as a sub-routine for the new problem
- Complications: Does it actually solve the new problem? How much faster is it compared to the original algorithm?
- Correctness: Show the solution for the created instance of the related problem gives the solution for the actual instance of the new problem
- Time analysis: Calculate the relevant size parameters of the created instance, in terms of the size of the actual instance. Plug that into the time analysis for the original algorithm.
Related problems

• What are some problems that we have already seen in other classes that seem related to the max bandwidth path problem?
 – Graph search

• Can we think of ways to use algorithms for these problems to solve max bandwidth path?
Graph reachability

• Given a directed graph \(G \) and a start vertex \(s \), produce a list of all vertices \(v \) reachable from \(s \) by a directed path in \(G \)

• At each point in a graph search algorithm, the vertices are partitioned into
 – \(X \): explored
 – \(F \): frontier (reached but have not yet explored)
 – \(U \): unreached
Graph reachability

procedure GraphSearch (G: directed graph, s: vertex)

Initialize $X = \text{empty}$, $F = \{s\}$, $U = V - F$.
While F is not empty:
 - Pick v in F.
 - **For** each neighbor u of v:
 - **If** u is not in X or F:
 - move u from U to F.
 - Move v from F to X.

Return X.

| X: explored |
| F: frontier (reached but have not yet explored) |
| U: unreached |
Graph reachability

• Data structures
 - X
 - F
 - U
 - G

What are required capabilities of each?

procedure GraphSearch (G: directed graph, s: vertex)
 Initialize X = empty, F = \{s\}, U = V − F.
 While F is not empty:
 Pick v in F.
 For each neighbor u of v:
 If u is not in X or F:
 move u from U to F.
 Move v from F to X.
 Return X.
Graph reachability

• Data structures and required capabilities
 – X is a set
 • Test membership
 • Insert
 – F is a set
 • Find and delete
 • Test membership
 • Insert
 – U is a set
 • Test membership
 • Delete
 – G is a graph
 • For each vertex, loop through its neighbors
Graph reachability

• Data structures and required capabilities
 – X is a set: array of booleans indexed by vertex
 • Test membership: $O(1)$
 • Insert: $O(1)$
 – F is a set: stack, or queue and array of booleans
 • Find and delete: pop, dequeue, flip boolean $O(1)$
 • Test membership: $O(1)$
 • Insert: push, enqueue, flip boolean $O(1)$
 – U is a set: array of booleans
 • Test membership $O(1)$
 • Delete $O(1)$
 – G is a graph: adjacency list
 • For each vertex, loop through its neighbors $O(\text{deg}(v)+1)$
Graph reachability, time analysis

procedure GraphSearch** (G: directed graph, s: vertex)**

Initialize X = empty, F = \{s\}, U = V − F. \(O(n)\) time to initialize arrays

While F is not empty:

Pick v in F. \(O(1)\) time to pop or dequeue

For each neighbor u of v: \(O(\text{deg}(v))\) time to list

 If u is not in X or F: \(O(1)\) time to check and change array value, push/enqueue

 move u from U to F. \(O(1)\)

Move v from F to X. \(O(1)\) time to change array value

Return X.

Total time: \(O(\sum \text{deg}(v))\) for all v chosen from F

\[|V| = n \]

\[O(\sum \text{deg}(v)) = O(|E|) \]
Graph reachability, time analysis

• Each v is added to F at most once
• Therefore, each v is deleted from F at most once
• Therefore, $O(\sum \deg(v))$ for all v chosen from F
 $\leq O(\sum \deg(v))$ for all v in $G = O(m)$
• So, total time is $O(n + m)$
Graph reachability, correctness

• Proof of correctness:
 – We must show that at the end of the algorithm:
 • A: if \(v \in X \) then there is a path from \(s \) to \(v \)
 • B: if \(v \notin X \) then there is not a path from \(s \) to \(v \)

procedure GraphSearch (G: directed graph, s: vertex)

 Initialize \(X = \) empty, \(F = \{s\}, U = V - F \).
 While \(F \) is not empty:
 Pick \(v \) in \(F \).
 For each neighbor \(u \) of \(v \):
 If \(u \) is not in \(X \) or \(F \):
 move \(u \) from \(U \) to \(F \).
 Move \(v \) from \(F \) to \(X \).
 Return \(X \).
Correctness, A

- **A**: if \(v \in X \) then there is a path from \(s \) to \(v \)
- **Proof of correctness**: (loop invariant)
 - After the \(t\text{-th} \) iteration of the while loop, every element of \(X \) or \(F \) is reachable from \(s \) in \(G \)
- **Base case**: before going through the loop, \(X \) is empty and \(F \) is \(\{s\} \)

procedure GraphSearch \((G:\text{directed graph}, s:\text{vertex}) \)

1. Initialize \(X = \text{empty}, F = \{s\}, U = V - F \).
2. **While** \(F \) is not empty:
 1. Pick \(v \) in \(F \).
 2. **For** each neighbor \(u \) of \(v \):
 1. If \(u \) is not in \(X \) or \(F \):
 - move \(u \) from \(U \) to \(F \).
 3. Move \(v \) from \(F \) to \(X \).
3. Return \(X \).
Correctness, \(A \)

- \(A: \) if \(v \in X \) then there is a path from \(s \) to \(v \)
- Proof of correctness: (loop invariant)
 - After the \(t-th \) iteration of the while loop, every element of \(X \) or \(F \) is reachable from \(s \) in \(G \)
- Base case: before going through the loop, \(X \) is empty and \(F \) is \(\{s\} \)
- Suppose the loop invariant is true after \(t \) iterations. What happens in the next iteration?

procedure GraphSearch (\(G \): directed graph, \(s \): vertex)

Initialize \(X = \) empty, \(F = \{s\}, U = V - F \).

While \(F \) is not empty:
- Pick \(v \) in \(F \).
- For each neighbor \(u \) of \(v \):
 - If \(u \) is not in \(X \) or \(F \):
 - Move \(u \) from \(U \) to \(F \).
 - Move \(v \) from \(F \) to \(X \).

Return \(X \).
Correctness, A

- **A**: if \(v \in X \) then there is a path from \(s \) to \(v \)
- **A**: You pick a vertex \(v \) in \(F \). (Which vertex depends on the data structure. For the sake of this proof, we can pick any of the vertices in \(F \) next.)
- **A**: We move all neighbors of \(v \) into \(F \) if they are in \(U \)

procedure GraphSearch \((G: \text{directed graph}, s: \text{vertex})\)

Initialize \(X = \text{empty}, F = \{s\}, U = V - F \).

While \(F \) is not empty:

Pick \(v \) in \(F \).

For each neighbor \(u \) of \(v \):

If \(u \) is not in \(X \) or \(F \):

move \(u \) from \(U \) to \(F \).

Move \(v \) from \(F \) to \(X \).

Return \(X \).
Correctness, \(A \)

- \(A: \) if \(v \in X \) then there is a path from \(s \) to \(v \)
- You pick a vertex \(v \) in F. (Which vertex depends on the data structure. For the sake of this proof, we can pick any of the vertices in F next.)
- We move all neighbors of \(v \) into F if they are in U
 - If there is a path from \(s \) to \(v \) and an edge \((v,u)\) then there is a path from \(s \) to \(u \)

procedure GraphSearch (G: directed graph, s: vertex)

Initialize \(X = \) empty, \(F = \{s\}, U = V - F \).

While \(F \) is not empty:
 - Pick \(v \) in \(F \).
 - For each neighbor \(u \) of \(v \):
 - If \(u \) is not in \(X \) or \(F \):
 - move \(u \) from \(U \) to \(F \).
 - Move \(v \) from \(F \) to \(X \).

Return \(X \).
Correctness, A

- **A**: if \(v \in X \) then there is a path from \(s \) to \(v \)
- You pick a vertex \(v \) in \(F \). (Which vertex depends on the data structure. For the sake of this proof, we can pick any of the vertices in \(F \) next.)
- We move all neighbors of \(v \) into \(F \) if they are in \(U \)
- We move \(v \) from \(F \) to \(X \)

procedure GraphSearch \((G: \text{directed graph}, s: \text{vertex}) \)

Initialize \(X = \text{empty}, F = \{s\}, U = V - F \).
While \(F \) is not empty:
Pick \(v \) in \(F \).
For each neighbor \(u \) of \(v \):
- If \(u \) is not in \(X \) or \(F \):
 - move \(u \) from \(U \) to \(F \).
Move \(v \) from \(F \) to \(X \).
Return \(X \).
Correctness, A

- **A**: if \(v \in X \) then there is a path from \(s \) to \(v \)
- You pick a vertex \(v \) in \(F \). (Which vertex depends on the data structure. For the sake of this proof, we can pick any of the vertices in \(F \) next.)
- We move all neighbors of \(v \) into \(F \) if they are in \(U \)
- We move \(v \) from \(F \) to \(X \)
 - By the induction hypothesis, we know there is a path from \(s \) to \(v \)

Procedure GraphSearch (\(G \): directed graph, \(s \): vertex)

Initialize \(X = \) empty, \(F = \{s\}, U = V - F \).

While \(F \) is not empty:
 - Pick \(v \) in \(F \).
 - **For** each neighbor \(u \) of \(v \):
 - **If** \(u \) is not in \(X \) or \(F \):
 - move \(u \) from \(U \) to \(F \).
 - Move \(v \) from \(F \) to \(X \).
 - Return \(X \).
Correctness, A

- **A**: if $v \in X$ then there is a path from s to v
- You pick a vertex v in F. (Which vertex depends on the data structure. For the sake of this proof, we can pick any of the vertices in F next.)
- We move all neighbors of v into F if they are in U
- We move v from F to X
- Thus, it remains true that all elements of F and X are reachable from s

```
procedure GraphSearch(G: directed graph, s: vertex)
  Initialize $X = \emptyset$, $F = \{s\}$, $U = V - F$.
  While $F$ is not empty:
    Pick $v$ in $F$.
    For each neighbor $u$ of $v$:
      If $u$ is not in $X$ or $F$:
        move $u$ from $U$ to $F$.
    Move $v$ from $F$ to $X$.
  Return $X$.
```
Correctness, B

- By the end of the algorithm, we are guaranteed that F is empty and all elements of X are reachable from s
- A: if $v \in X$ then there is a path from s to v
- B: if $v \notin X$ then there is not a path from s to v
- Could it be possible that there is some vertex v that is reachable from s but is not in X?

procedure `GraphSearch` (G: directed graph, s: vertex)

Initialize $X = \text{empty}$, $F = \{s\}$, $U = V - F$.

While F is not empty:
- Pick v in F.
- For each neighbor u of v:
 - If u is not in X or F:
 - move u from U to F.
- Move v from F to X.
Return X.

CSE 101, Fall 2018
Correctness, B

- B: if $v \notin X$ then there is not a path from s to v
- Suppose by contradiction that there is a vertex v reachable from s that is not in X. Then there is a path from s to v. Let z be the last vertex in the path that is not in X and w be the first vertex in the path that is not in X.
- Then z must have been in F at some point. And when z was picked from F, w must have been moved from U to F. And down the line, w must have been moved from F to X.

procedure $\text{GraphSearch}(G: \text{directed graph, } s: \text{vertex})$

Initialize $X = \text{empty}$, $F = \{s\}$, $U = V - F$.
\textbf{While} F is not empty:
- Pick v in F.
- For each neighbor u of v:
 - If u is not in X or F:
 - move u from U to F.
 - Move v from F to X.
Return X.
Tension in modifying graph search

- Key point in time analysis: Each vertex v is only explored once (additional times explored give additional factors in time)

- Key point in correctness: Every time a new type or better path to a vertex is found, we need to explore again

- Vanilla graph search: No problem, because there is only one type of path
Max bandwidth

• We have an algorithm that takes a graph and starting vertex s and outputs a list of all vertices reachable from s
• How do we use this to solve the max bandwidth problem?
• Break into groups of 4 or 5, discuss approaches and hand in a summary, one per group
 – Don’t worry about getting the answer right, just brainstorm ideas

procedure GraphSearch (G: directed graph, s: vertex)

Initialize X = empty, F = \{s\}, U = V – F.
While F is not empty:
 Pick v in F.
 For each neighbor u of v:
 If u is not in X or F:
 move u from U to F.
 Move v from F to X.
Return X.
What is the largest bandwidth of a path from A to H?
Max bandwidth path

Max bandwidth path from A to H

BW(p) = 6
Next lecture

• Directed acyclic graphs and strongly connected components
 – Reading: Sections 3.3 and 3.4