Dynamic Programming

CSE 101: Design and Analysis of Algorithms
Lecture 17
CSE 101: Design and analysis of algorithms

• Dynamic programming
 – Reading: Chapter 6
• Quiz 3 is today, last 40 minutes of class
• Homework 7 will be assigned Nov 29
 • Due Dec 6, 11:59 PM
Dynamic Programming

Dynamic programming is an algorithmic paradigm in which a problem is solved by identifying a collection of subproblems and tackling them one by one, smallest first, using the answers to small problems to help figure out larger ones, until they are all solved.

Based on slides courtesy of Miles Jones
Dynamic Programming

- Dynamic programming is an algorithmic paradigm in which a problem is solved by identifying a collection of subproblems and tackling them one by one, smallest first, using the answers to small problems to help figure out larger ones, until they are all solved.
- Example: fib2

CSE 101, Fall 2018
Fibonacci sequence definition

• The sequence of integers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
 – Each number is the sum of the previous two numbers

• $F(1) = 1$
• $F(2) = 1$
• $F(n) = F(n-1) + F(n-2)$
Fibonacci sequence, algorithm 1

function \texttt{fib1}(n)

if \(n = 1 \) then return 1
if \(n = 2 \) then return 1
return \texttt{fib1}(n-1) + \texttt{fib1}(n-2)

• Let \(T(n) \) be the number of computer steps it takes to calculate \texttt{fib1}(n)

If \(n < 3 \) then \(0 < T(n) < 3 \)
If \(n > 3 \) then \(T(n) > T(n-1) + T(n-2) \)
So we have that \(T(n) > F(n) \)

Fibonacci numbers grow fast!
\(F(n) \sim 1.6^n \)
Fibonacci sequence, algorithm 1

• Why does it take so long?
 – Recomputing
General principle: store and re-use

• If an algorithm is **recomputing** the same thing many times, we should **store and re-use** instead of recomputing

• Basis for dynamic programming
Fibonacci sequence, algorithm 2

function fib2(n)
if $n = 1$ then return 1
if $n = 2$ then return 1
create array f[1...n]
f[1] := 1
f[2] := 1
for $i = 3$... n:
 f[i] := f[i-1] + f[i-2]
return f[n]

The for loop consists of a single computer step, so in order to compute $f[n]$, you need $n – 1 + 2$ computer steps!

This is a huge improvement: linear time ($O(n)$) vs. exponential time ($O(1.6^n)$)
WEIGHTED EVENT SCHEDULING
Weighted event scheduling
Weighted event scheduling

• Instance: list of n intervals I= (s,f), with associated values v

• Solution format: subset of intervals

• Constraints: cannot pick intersecting intervals

• Objective function: maximize total value of intervals chosen
Weighted event scheduling

• No known greedy algorithm
 – In fact, Borodin, Nielsen, and Rackoff formally prove no greedy algorithm even approximates

• Brute force? 2^n subsets
Backtracking

• Sort events by start time
• Pick first to start. I_1 not necessarily good to include, so we will try both possibilities:
 – Case 1: we exclude I_1, recurse on $[I_2, \ldots, I_n]$
 – Case 2: we include I_1, recurse on the set of all intervals that do not conflict with I_1
 • Is there a better way to describe this set? All events that start after I_1 finished, $[I_j, \ldots, I_n]$ for some J
Backtracking, runtime

- Sort events by start time
- Pick first to start. I_1 not necessarily good to include, so we will try both possibilities: exclude I_1 and include I_1

BTWES ($I_1 \ldots I_n$): in order of start times $T(n)$

If $n=0$ return 0
If $n=1$ return V_1
Exclude:= BTWES($I_2 \ldots I_n$) $T(n - 1)$
J:=2
Until (J > n or s_J > f_1) do J++
Include:= V_1 +BTWES($I_J \ldots I_n$) $T(n - J)$
return Max(Include, Exclude)

$T(n) = T(n - 1) + T(n - J) + O(poly)$
$T(n) = O(2^n)$
Backtracking, runtime

• $O(2^n)$ worst case time, same as exhaustive search

• We could try to improve or use dynamic programming
Example

- $I_1 = (1,5), V_1 = 4$
- $I_2 = (2,4), V_2 = 3$
- $I_3 = (3,7), V_3 = 5$
- $I_4 = (4,9), V_4 = 6$
- $I_5 = (5,8), V_5 = 3$
- $I_6 = (6,11), V_6 = 4$
- $I_7 = (9,13), V_7 = 5$
- $I_8 = (10,12), V_8 = 3$
Total number of calls vs number of distinct calls

• We make up to 2^n recursive calls in our algorithm
• But every recursive call has the form $I_j \ldots I_n$
• Thus, there are at most $n + 1$ different calls throughout
• Memoization: Store and reuse the answers, do not recompute
Example

$I_1 = (1,5), V_1 = 4$
$I_2 = (2,4), V_2 = 3$
$I_3 = (3,7), V_3 = 5$
$I_4 = (4,9), V_4 = 6$
$I_5 = (5,8), V_5 = 3$
$I_6 = (6,11), V_6 = 4$
$I_7 = (9,13), V_7 = 5$
$I_8 = (10,12), V_8 = 3$

Distinct calls:

$I_{1...8}, I_{2...8}, I_{3...8}, I_{4...8}, I_{5...8}, I_{6...8}, I_{7...8}, I_{8}, \text{none}$
Characterize calls made

• All of the recursive calls BTWES makes are to arrays of the form $I^K_{K \ldots n}$ or empty with K=1...n
• So, of the 2^n recursive calls we might make, only $n + 1$ distinct calls are made
• Just like Fibonacci numbers: many calls made exponentially often
• Solution same: create array to store and re-use answers, rather than repeatedly solving them
Dynamic programming steps

• Step 1: Define subproblems and corresponding array
• Step 2: What are the base cases?
• Step 3: Give recursion for subproblems
• Step 4: Find bottom-up order
• Step 5: What is the final output?
• Step 6: Put it all together into an iterative algorithm that fills in the array step by step

• For analysis:
• Step 7: Correctness proof
• Step 8: Runtime analysis
Dynamic programming steps

- Step 1: Define subproblems and corresponding array
Dynamic programming steps

- Step 1: Define subproblems and corresponding array

Given an input \([I_1, \ldots, I_n]\), output the maximum value subset
Dynamic programming steps

• Step 1: Define subproblems and corresponding array

Given an input \([I_1, \ldots, I_n]\), output the maximum value subset
Given an input \([I_1, \ldots, I_k]\), where \(k \leq n\), output the maximum value subset
Dynamic programming steps

• Step 1: Define subproblems and corresponding array

Given an input \([I_1, \ldots, I_n]\), output the maximum value subset
Given an input \([I_1, \ldots, I_k]\), where \(k \leq n\), output the maximum value subset
Let MVS\([k]\) be the maximum value subset of \([I_1, \ldots, I_k]\)
Dynamic programming steps

• Step 2: What are the base cases?
Dynamic programming steps

- Step 2: What are the base cases?

\[\text{MVS}[0] = 0 \]
\[\text{MVS}[1] = V_1 \]
Dynamic programming steps

• Step 3: Give recursion for subproblems
Dynamic programming steps

• Step 3: Give recursion for subproblems

MVS[k] is the maximum value subset of \([I_1, ..., I_k]\)

What is MVS[k] in terms of other subproblems?
Dynamic programming steps

• Step 3: Give recursion for subproblems

MVS[k] is the maximum value subset of \([I_1, ..., I_k]\)

What is MVS[k] in terms of other subproblems?

Is \(I_k\) part of the max value subset?
Dynamic programming steps

- Step 3: Give recursion for subproblems

MVS\[k\] is the maximum value subset of \([I_1, \ldots, I_k]\)
What is MVS\[k\] in terms of other subproblems?
Is \(I_k\) part of the max value subset?
 - Case 1: \(I_k\) is not part of the max value subset

 Case 2: \(I_k\) is part of the max value subset
Dynamic programming steps

• Step 3: Give recursion for subproblems

MVS\([k]\) is the maximum value subset of \([I_1, \ldots, I_k]\)

What is MVS\([k]\) in terms of other subproblems?

Is \(I_k\) part of the max value subset?

 Case 1: \(I_k \) is not part of the max value subset

 Case 2: \(I_k \) is part of the max value subset
Dynamic programming steps

- Step 3: Give recursion for subproblems

MVS[k] is the maximum value subset of [I_1, ..., I_k]

What is MVS[k] in terms of other subproblems?

Is \(I_k \) part of the max value subset?

 Case 1: \(I_k \) is not part of the max value subset
 \[MVS[k] = MVS[k - 1] \]

 Case 2: \(I_k \) is part of the max value subset
Dynamic programming steps

- Step 3: Give recursion for subproblems

MVS[k] is the maximum value subset of [I₁, ..., Iₖ]

What is MVS[k] in terms of other subproblems?

Is Iₖ part of the max value subset?

 Case 1: Iₖ is not part of the max value subset

 \[\text{MVS}[k] = \text{MVS}[k - 1] \]

 Case 2: Iₖ is part of the max value subset
Dynamic programming steps

• Step 3: Give recursion for subproblems

MVS\([k]\) is the maximum value subset of \([I_1, ..., I_k]\)

What is MVS\([k]\) in terms of other subproblems?

Is \(I_k\) part of the max value subset?

Case 1: \(I_k\) is not part of the max value subset

\[MVS[k] = MVS[k - 1] \]

Case 2: \(I_k\) is part of the max value subset

\[MVS[k] = V_k + \text{max value subset of intervals not conflicting with } k \]
Dynamic programming steps

• Step 3: Give recursion for subproblems

MVS\[k\] is the maximum value subset of \([I_1, \ldots, I_k]\)

What is MVS\[k\] in terms of other subproblems?

Is \(I_k\) part of the max value subset?

Case 1: \(I_k\) is not part of the max value subset

\[
\text{MVS}[k] = \text{MVS}[k - 1]
\]

Case 2: \(I_k\) is part of the max value subset

\[
\text{MVS}[k] = V_k + \text{max value subset of intervals not conflicting with } k
\]

\[
\text{MVS}[k] = V_k + \text{MVS}[j], \text{ where } I_j \text{ is the last interval before } I_k \text{ starts}
\]
Dynamic programming steps

- Step 3: Give recursion for subproblems

MVS\([k]\) is the maximum value subset of \([I_1, \ldots, I_k]\)

What is MVS\([k]\) in terms of other subproblems?

Is \(I_k\) part of the max value subset?

- Case 1: \(I_k\) is not part of the max value subset

 \[
 \text{MVS}[k] = \text{MVS}[k - 1]
 \]

- Case 2: \(I_k\) is part of the max value subset

 \[
 \text{MVS}[k] = V_k + \text{max value subset of intervals not conflicting with } k
 \]

 \[
 \text{MVS}[k] = V_k + \text{MVS}[j], \text{ where } I_j \text{ is the last interval before } I_k \text{ starts}
 \]

\[
\text{MVS}[k] = \max(\text{MVS}[k - 1], V_k + \text{MVS}[j]), \text{ where } I_j \text{ is the last interval before } I_k \text{ starts}
\]
Dynamic programming steps

• Step 4: Find bottom-up order
Dynamic programming steps

- Step 4: Find bottom-up order

Order from 0 to n
Dynamic programming steps

• Step 4: Find bottom-up order

Order from 0 to n

MVS
Dynamic programming steps

- Step 4: Find bottom-up order
Dynamic programming steps

• Step 4: Find bottom-up order

Order from 0 to n

MVS

0 1 2 3 4 5 6 ...

for $k = 0$ to n
Dynamic programming steps

• Step 5: What is the final output?
Dynamic programming steps

- Step 5: What is the final output?

\[\text{MVS}[n] \text{ is the maximum value subset of } [I_1, \ldots, I_n] \]
Dynamic programming steps

- Step 6: Put it all together into an iterative algorithm that fills in the array step by step
Dynamic programming steps

• Step 6: Put it all together into an iterative algorithm that fills in the array step by step

maxsubset(\(I_1 \ldots I_n\)): in order of start times

\[
\begin{align*}
\text{MVS}[0] &= 0 \\
\text{MVS}[1] &= V_1 \\
\text{Create array MVS}[0, ..., n] \\
\text{for } k = 2 \ldots n \\
\quad &= 1 \\
\quad \text{while } f_j \leq s_k \\
\quad \quad &j++ \\
\quad &\text{MVS}[k] = \max(\text{MVS}[k - 1], V_k + \text{MVS}[j - 1]) \\
\text{return MVS}[n]
\end{align*}
\]
Dynamic programming steps

• Step 7: Correctness proof
Dynamic programming steps

• Step 7: Correctness proof

Claim: MVS\([k]\) is the maximum value subset of \([I_1, \ldots, I_k]\) for \(k = 0\) to \(n\)
Dynamic programming steps

• Step 7: Correctness proof

Claim: MVS[k] is the maximum value subset of [I_1, ..., I_k] for k = 0 to n

Base cases:
Dynamic programming steps

• Step 7: Correctness proof

Claim: MVS[k] is the maximum value subset of [I_1, ..., I_k] for k = 0 to n

Base cases:
- MVS[0] = 0 is the maximum value of the empty set
- MVS[1] = V_1 is the maximum value when there is only one interval
Dynamic programming steps

• Step 7: Correctness proof

Claim: $\text{MVS}[k]$ is the maximum value subset of $[I_1, \ldots, I_k]$ for $k = 0$ to n

Base cases:
- $\text{MVS}[0] = 0$ is the maximum value of the empty set
- $\text{MVS}[1] = V_1$ is the maximum value when there is only one interval

Assume for some $k > 1$, $\text{MVS}[i]$ is the maximum value subset for intervals I_1, \ldots, I_i for all i such that $0 \leq i < k$
Dynamic programming steps

- Step 7: Correctness proof (continued)

Want to show $\text{MVS}[k]$ is the maximum value subset of $[I_1, ..., I_k]$

Case 1: suppose I_k is not part of the max value subset

Then, $\text{MVS}[k]$ should be the same as the max value subset of $[I_1, ..., I_{k-1}]$ which is stored in $\text{MVS}[k-1]$

Case 2: suppose I_k is part of the max value subset

Then, all intervals before I_k that conflict with I_k cannot be included. If I_j is the last interval that does not conflict with I_k, then $\text{MVS}[k]$ should be the value of I_k plus the maximum value subset on intervals $[I_1, ..., I_j]$ which is stored in $\text{MVS}[j]$.

Since Case 1 and Case 2 are the only possibilities, the maximum value subset should be the maximum of these two values.

$\text{MVS}[k] = \max(\text{MVS}[k-1], V_k + \text{MVS}[j])$

Conclusion: $\text{MVS}[k]$ is the maximum value subset of $[I_1, ..., I_k]$
Dynamic programming steps

- Step 7: Correctness proof (continued)

Want to show $\text{MVS}[k]$ is the maximum value subset of $[I_1, \ldots, I_k]$

Case 1: suppose I_k is not part of the max value subset

Case 2: suppose I_k is part of the max value subset
Dynamic programming steps

• Step 7: Correctness proof (continued)

Want to show MVS[k] is the maximum value subset of [I₁, ..., Iₖ]

Case 1: suppose Iₖ is not part of the max value subset
 Then, MVS[k] should be the same as the max value subset of [I₁, ..., Iₖ₋₁] which is stored in MVS[k – 1]

Case 2: suppose Iₖ is part of the max value subset
 Then, all intervals before Iₖ that conflict with Iₖ cannot be included. If I_j is the last interval that does not conflict with Iₖ, then MVS[k] should be the value of Iₖ plus the maximum value subset on intervals [I₁, ..., I_j] which is stored in MVS[j].
Dynamic programming steps

- Step 7: Correctness proof (continued)

Want to show $\text{MVS}[k]$ is the maximum value subset of $[I_1, ..., I_k]$

Case 1: suppose I_k is not part of the max value subset

Then, $\text{MVS}[k]$ should be the same as the max value subset of $[I_1, ..., I_{k-1}]$ which is stored in $\text{MVS}[k-1]$

Case 2: suppose I_k is part of the max value subset

Then, all intervals before I_k that conflict with I_k cannot be included. If I_j is the last interval that does not conflict with I_k, then $\text{MVS}[k]$ should be the value of I_k plus the maximum value subset on intervals $[I_1, ..., I_j]$ which is stored in $\text{MVS}[j]$.

Since Case 1 and Case 2 are the only possibilities, the maximum value subset should be the maximum of these two values. $\text{MVS}[k] = \max(\text{MVS}[k-1], V_k + \text{MVS}[j])$
Dynamic programming steps

• Step 7: Correctness proof (continued)

Want to show $MVS[k]$ is the maximum value subset of $[I_1, ..., I_k]$

Case 1: suppose I_k is not part of the max value subset
Then, $MVS[k]$ should be the same as the max value subset of $[I_1, ..., I_{k-1}]$ which is stored in $MVS[k - 1]$

Case 2: suppose I_k is part of the max value subset
Then, all intervals before I_k that conflict with I_k cannot be included. If I_j is the last interval that does not conflict with I_k, then $MVS[k]$ should be the value of I_k plus the maximum value subset on intervals $[I_1, ..., I_j]$ which is stored in $MVS[j]$.

Since Case 1 and Case 2 are the only possibilities, the maximum value subset should be the maximum of these two values. $MVS[k] = \max(MVS[k-1], V_k + MVS[j])$

Conclusion: $MVS[k]$ is the maximum value subset of $[I_1, ..., I_k]$
Dynamic programming steps

• Step 8: Runtime analysis

maxsubset(𝐼₁, …, 𝐼ₙ): in order of start times

Initialize MVS[0], …, MVS[n]
MVS[0] = 0
MVS[1] = 𝑉₁

for 𝑘 = 2, …, 𝑛
 for 𝑖 = 1, …, 𝑘
 if 𝑓𝑖 ≤ 𝑠𝑘
 𝑀𝑉𝑆[𝑘] = max(𝑀𝑉𝑆[𝑘−1], 𝑉𝑘 + 𝑀𝑉𝑆[𝑖−1])

return MVS[n]
Dynamic programming steps

• Step 8: Runtime analysis

maxsubset($I_1 \ldots I_n$): in order of start times

\[
\begin{align*}
\text{MVS}[0] & = 0 \\
\text{MVS}[1] & = V_1 \\
\text{Create array MVS}[0, \ldots, n] \\
\text{for } k = 2 \ldots n \quad \text{n times} \\
\quad j = 1 \\
\quad \text{while } f_j \leq s_k \quad O(n) \\
\quad \quad j++ \\
\quad \text{MVS}[k] = \max(\text{MVS}[k - 1] , V_k + \text{MVS}[j - 1]) \quad O(1) \\
\text{return MVS}[n]
\end{align*}
\]
Dynamic programming steps

• Step 8: Runtime analysis

maxsubset($I_1 \ldots I_n$): in order of start times

\[
\begin{align*}
MVS[0] &= 0 \\
MVS[1] &= V_1 \\
\text{Create array } MVS[0, \ldots, n] \\
\text{for } k = 2 \ldots n & \quad n \text{ times} \\
\quad j = 1 \\
\quad \text{while } f_j \leq s_k & \quad O(n) \\
\quad \quad j++ \\
MVS[k] &= \max(MVS[k - 1], V_k + MVS[j - 1]) \quad O(1)
\end{align*}
\]

return $MVS[n]$ \hspace{1cm} \text{Total runtime } O(n^2) \quad \text{Exercise: can you improve the runtime?}
Next lecture

• Dynamic programming
 – Reading: Chapter 6