CSE 101: Design and analysis of algorithms

• Divide and conquer algorithms
 – Reading: Chapter 2

• Homework 6 is due Nov 20, 11:59 PM
Divide and conquer example

POWER OF 2
Power of 2

• Problem: Given \(n \), compute the digits of \(2^n \) in decimal

• Note: \(\log_{10} 2^n = n \log_{10} 2 \approx 0.3n \) is \(\Theta(n) \), so \(2^n \) has \(cn \) digits for some \(c > 0 \)

• As such, we cannot treat multiplication as a single step, but we can use multiplyKS

• What sub-problem would be useful in computing \(2^n \)?
Power of 2

• Problem: Given n, compute the digits of 2^n in decimal
• Note: $\log_{10} 2^n = n \log_{10} 2 \approx 0.3n$ is $\Theta(n)$, so 2^n has cn digits for some $c > 0$
• As such, we cannot treat multiplication as a single step, but we can use multiplyKS
• What sub-problem would be useful in computing 2^n?
 – Compute $2^{n/2}$, then square it
Power of 2 algorithm

PoT (n)

IF n=0 THEN return 1
IF n=1 THEN return 2
P := PoT(\[\frac{n}{2}\])
P := multiplyKS(P, P)
IF n mod 2 = 1 THEN
 P := Add(P, P)
Return P
Power of 2 algorithm, correctness

PoT (n)

IF n=0 THEN return 1 \(2^0 = 1\) Base cases
IF n=1 THEN return 2 \(2^1 = 2\)

\[P : = \text{PoT}\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \]

By induction, \(P = 2^{\frac{n}{2}}\) if n is even, \(2^{\frac{n-1}{2}}\) if n is odd

\[P : = \text{multiplyKS}(P,P) \]

\(P = (2^{n/2})(2^{n/2}) = 2^n\) if n is even, \(2^{n-1}\) if n is odd

IF n mod 2 = 1 THEN

\[P := \text{Add}(P,P) \]

\(P = 2^n\)

Return P
Power of 2 algorithm, runtime

\[T(n) \]

IF n=0 THEN return 1
IF n=1 THEN return 2

\[P := \text{PoT}(\left\lfloor \frac{n}{2} \right\rfloor) \quad T\left(\frac{n}{2}\right) \]

\[P := \text{multiplyKS}(P, P) \quad O(n^{\log_2 3}) \]
IF n mod 2 = 1 THEN
\[P := \text{Add}(P, P) \quad O(n) \]

Return P

\[T(n) = T\left(\frac{n}{2}\right) + O(n^{\log_2 3}) \]
Master theorem applied

The recursion for the runtime is

\[T(n) = T\left(\frac{n}{2}\right) + O(n^{\log_2 3}) \]

So, we have that \(a = 1, \ b = 2, \) and \(d = \log_2 3. \) In this case, \(a < b^d \) so

\[T(n) \in O(n^{\log_2 3}) \approx O(n^{1.58}) \]
Divide and conquer example

MAKING A BINARY HEAP
Making a binary heap

• How long do you expect it takes to make a binary heap from \(n \) objects each with a key value?

• Recall

 – A complete binary tree of objects (vertices) with the property that each key value of an object is less than the key value of its child

 – To \textbf{insert} \((o, k), H\), place the new element \((o, k)\) at the bottom of the tree \(H\), (in the first available position) and let it “bubble up”
To insert \((o, k), H\), place the new element \((o, k)\) at the bottom of the tree \(H\), (in the first available position) and let it “bubble up”
To insert \((o, k), H\), place the new element \((o, k)\) at the bottom of the tree \(H\), (in the first available position) and let it “bubble up”
Making a binary heap

To \textbf{insert}\((o, k), H\), place the new element \((o, k)\) at the bottom of the tree \(H\), (in the first available position) and let it “bubble up”
Making a binary heap

• How long do you expect it takes to make a binary heap from n objects each with a key value?
 – Insert n times
 • How much time for each insert?
Making a binary heap

• How long do you expect it takes to make a binary heap from n objects each with a key value?
 – Insert n times
 • Each insert is $O(\log n)$, so total time is $O(n \log n)$
Making a binary heap

• How long do you expect it takes to make a binary heap from \(n \) objects each with a key value?

• Start with your first object and repeatedly insert a new object into your heap

\[
\text{makeheap}((o_1, k_1), \ldots (o_n, k_n))
\]

\[
\text{If } n == 1:
\]

\[
\text{return } [(o_1, k_1)]
\]

\[
\text{return } \text{insert}((o_n, k_n), \text{makeheap}((o_1, k_1), \ldots (o_{n-1}, k_{n-1})))
\]
Making a binary heap

• How long do you expect it takes to make a binary heap from n objects each with a key value?
• Start with your first object and repeatedly insert a new object into your heap

\[
\text{makeheap}((o_1, k_1), \ldots (o_n, k_n)) \quad T(n)
\]
If $n == 1$:
 return $[(o_1, k_1)]$ \hspace{1cm} $O(1)$
return insert($[o_n, k_n]$), makeheap($(o_1, k_1), \ldots (o_{n-1}, k_{n-1}))$
 $O(\log n)$ \hspace{1cm} $T(n-1)$
Making a binary heap

- Can we improve on $O(n \log n)$?
- Let’s try divide and conquer
 - How would that work?
Making a binary heap

• Can we improve on $O(n \log n)$?
• Let’s try divide and conquer
 – How would that work?
 • Base case
 • Break the problem up
 • Recursively solve each problem
 – Assume the algorithm works for the subproblems
 • Combine the results
Making a binary heap

- Let’s assume that $n = 2^k - 1$
- Goal: Make a min heap out of the list of objects $[(o_1, k_1), \ldots, (o_n, k_n)]$
Making a binary heap

• Let’s assume that \(n = 2^k - 1 \)
• Goal: Make a min heap out of the list of objects \([(o_1, k_1), ..., (o_n, k_n)] \)
• Put \((o_1, k_1)\) aside and break the remaining part into 2 each of size \(2^{k-1} - 1\)
 – Assume our algorithm works on the two subproblems
• This results in two binary heaps
• Then make \((o_1, k_1)\) the root and let it trickle down
Binary heap

- Put \((o_1, k_1)\) aside and break the remaining part into 2 each of size \(2^{k-1} - 1\)

\[[M_{13}, D_8, B_{10}, J_{11}, C_{12}, H_8, L_9, Q_{14}, A_{10}, I_{16}, O_{26}, K_{12}, E_{12}, N_{14}, G_{22}]\]
Binary heap

- Put the first object as the root of the two subtrees and let it trickle down
• Put the first object as the root of the two subtrees and let it trickle down
Binary heap

• Put the first object as the root of the two subtrees and let it trickle down
Divide and conquer make heap

\[
\text{makeheapDC}((o_1, k_1), \ldots (o_n, k_n)) [n = 2^k - 1 \text{ for some integer } k]
\]

If \(n == 1 \):
\[
\text{return } [(o_1, k_1)]
\]

\[
H_1 = \text{makeheapDC}((o_2, k_2), \ldots (o_{\frac{n+1}{2}}, k_{\frac{n+1}{2}}))
\]

\[
H_2 = \text{makeheapDC} \left(\left(\frac{o_{\frac{n+1}{2}}}{2} + 1, \frac{k_{\frac{n+1}{2}}}{2} + 1 \right), \ldots (o_n, k_n) \right)
\]

Return combine \((o_1, k_1), H_1, H_2)\) \quad \text{If } k = 2, \ n = 3
Divide and conquer make heap, runtime

\[\text{makeheapDC}((o_1, k_1), \ldots (o_n, k_n))[n = 2^k - 1 \text{ for some integer } k] \]

If \(n == 1 \):

\[\text{return } [(o_1, k_1)] \]

\(H_1 = \text{makeheapDC}((o_2, k_2), \ldots (o_{\frac{n+1}{2}}, k_{\frac{n+1}{2}})) \]

\(H_2 = \text{makeheapDC}\left(\left(\frac{o_{\frac{n+1}{2}}+1}{2}, \frac{k_{\frac{n+1}{2}}+1}{2}\right), \ldots (o_n, k_n)\right) \]

Return combine\(((o_1, k_1), H_1, H_2) \)

\[T(n) = 2T\left(\frac{n}{2}\right) + O(\log n) \]

\[O(\log n) \]
Divide and conquer make heap, runtime

- Problem: $T(n) = 2T(n/2) + O(\log n)$ not of the form for master theorem
- One solution: go back to tree
Divide and conquer make heap, runtime

- Problem: \(T(n) = 2T(n/2) + O(\log n) \) not of the form for master theorem
- One solution: go back to tree
- Another solution: cheat

\[
L(n) = 2L(n/2) + 1, L(n) < T(n)
\]
\[
U(n) = 2U(n/2) + n^{1/2}, U(n) > T(n)
\]
- Master theorem: \(L(n), U(n) \) both bottom heavy (same \(a, b \))
- So both \(U(n), L(n) \) are \(\theta(n^{\log_2 2}) = \theta(n) \)
- Since \(L(n) < T(n) < U(n) \)
 - Same true for \(T(n) \)
 - \(T(n) \in \theta(n) \)
Uneven binary heap

• What if the input size n is not $2^k - 1$?
• Then, let n be the input size and let m be the smallest integer greater than n such that $m = 2^k - 1$ for some k
• Then add in $m - n$ objects (o_i, ∞) and redo the original algorithm
• $m < 2n$ and the algorithm will run in $O(m)$ time so it will run in $O(n)$ time
Uneven binary heap

• What if the input size n is not $2^k - 1$?

• Another way is to use Floyd’s buildheap algorithm: fill in the heap randomly and organize it from the bottom up
 – Percolate down from the bottom up
Uneven binary heap

- Floyd’s buildheap algorithm: percolate down from the bottom up.

How long does this take? In the worst case \(O(n \log n) \) for each of the \(n \) elements, so \(O(n \log n) \).
Uneven binary heap

- Floyd’s buildheap algorithm: percolate down from the bottom up.
- How long does this take?
Uneven binary heap

- Floyd’s buildheap algorithm: percolate down from the bottom up.
- How long does this take? In the worst case $O(\log n)$ for each of the n elements, so $O(n \log n)$
Uneven binary heap

• The amount of work needed is:

\[
\frac{n}{2} \cdot 1 + \frac{n}{2^2} \cdot 2 + \frac{n}{2^3} \cdot 3 + \cdots
\]

\[
= n \sum_{i=1}^{\log n} \frac{i}{2^i} < c
\]

\[
T(n) < cn = O(n)
\]
Uneven divide and conquer

- Sometimes, sizes of sub-parts not identical or depends on the input
- Example: given a pointer to a binary tree, compute its depth

Depth(r: node) \(T(n) \)

If lc.r \(\neq \) NIL then
 d:= Depth(lc.r) \(T(L) \)
else
 d:=0
If rc.r \(\neq \) NIL then
 d:= max(d, Depth(rc.r)) \(T(R) \)
Return d + 1
Time analysis

• If tree is balanced, the recurrence is

\[T(n) = 2T \left(\frac{n}{2} \right) + O(1) \]

\[T(n) = O(n^{\log_2 2}) = O(n) \]

Master theorem

• If tree is totally unbalanced, the recurrence is

\[T(n) = T(n - 1) + O(1) = O(n) \]
Either case

• $T(n) = T(L) + T(R) + c$
 - $T(0)=0$, $T(1)=c$, to make things fit
• $n = L + R + 1$
Either case

- \(T(n) = T(L) + T(R) + c \)
 - \(T(0)=0, \ T(1)=c \), to make things fit
- \(n = L + R + 1 \)

- Then, by strong induction for some \(n \), we claim \(T(k) \leq ck \) for all \(k < n \)
- \(T(L) \leq cL \)
- \(T(R) \leq cR \)
- \(T(n) \leq cL+cR+c = c (L+R+1) = cn \)
Divide and conquer example

GREATES OVERLAP
Greatest overlap

• Given a list of intervals \([a_1,b_1],\ldots[a_n,b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals

• An interval \([a,b]\) is a set of integers starting at \(a\) and ending at \(b\). For example: \([16,23] = \{16,17,18,19,20,21,22,23\}\)

• An overlap between two intervals \([a,b]\) and \([c,d]\) is their intersection

• Given two intervals \([a,b]\) and \([c,d]\), how would you compute the length of their overlap?
Greatest overlap

- Given two intervals \([a,b]\) and \([c,d]\), how would you compute the length of their overlap?

```
procedure overlap([a,b],[c,d]) [assume that a ≤ c]
    if b < c:
        return ❓
    else:
        if b ≤ d:
            return ❓
        if b > d:
            return ❓
```

CSE 101, Fall 2018
Greatest overlap

- Given two intervals \([a,b]\) and \([c,d]\), how would you compute the length of their overlap?

```plaintext
procedure overlap([a,b],[c,d]) [assume that a ≤ c]
    if b < c:
        return 0
    else:
        if b ≤ d:
            return ?
        if b > d:
            return ?
```

CSE 101, Fall 2018
Greatest overlap

- Given two intervals \([a,b]\) and \([c,d]\), how would you compute the length of their overlap?

```plaintext
procedure overlap([a,b],[c,d]) [assume that a ≤ c]

if b < c:
    return 0
else:
    if b ≤ d:
        return b - c + 1
    if b > d:
        return ?
```

CSE 101, Fall 2018
Greatest overlap

- Given two intervals \([a,b]\) and \([c,d]\), how would you compute the length of their overlap?

procedure overlap([a,b],[c,d]) [assume that a ≤ c]

if \(b < c\):
 return 0
else:
 if \(b ≤ d\):
 return \(b - c + 1\)
 if \(b > d\):
 return \(d - c + 1\)
Greatest overlap

• Given a list of intervals \([a_1,b_1],...[a_n,b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals

• Example: What is the greatest overlap of the intervals
 \([45,57],[17,50],[10,29],[12,22],[23,51],[31,32],[10,15],[23,35]\)
Greatest overlap

• Given a list of intervals \([a_1,b_1],...,[a_n,b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals

• Example: What is the greatest overlap of the intervals \([45,57],[17,50],[10,29],[12,22],[23,51],[31,32],[10,15],[23,35]\)
Greatest overlap

• Given a list of intervals \([a_1, b_1], \ldots, [a_n, b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals

• Simple solution?
Greatest overlap

• Given a list of intervals \([a_1,b_1],...[a_n,b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals
• Simple solution: Compute all overlap pairs and find maximum
Greatest overlap

• Given a list of intervals \([a_1, b_1], \ldots, [a_n, b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals.

• Simple solution

olap := 0
for i from 1 to n-1
 for j from i+1 to n
 if overlap([a_i, b_i], [a_j, b_j]) > olap then
 olap := overlap([a_i, b_i], [a_j, b_j])

return olap
Greatest overlap

• Given a list of intervals \([a_1, b_1], \ldots, [a_n, b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals

• Simple solution

\[
\text{olap} := 0 \\
\text{for } i \text{ from } 1 \text{ to } n-1 \\
\quad \text{for } j \text{ from } i+1 \text{ to } n \\
\quad \quad \text{if overlap}([a_i, b_i], [a_j, b_j]) > \text{olap} \text{ then} \\
\quad \quad \quad \text{olap} := \text{overlap}([a_i, b_i], [a_j, b_j]) \\
\quad \text{return olap}
\]

\(O(n^2)\) Can we do better?
Greatest overlap

• Given a list of intervals \([a_1, b_1], \ldots [a_n, b_n]\) write pseudocode for a divide and conquer algorithm that outputs the length of the greatest overlap between two intervals
 – Compose your base case
 – Break the problem into smaller pieces
 – Recursively call the algorithm on the smaller pieces
 – Combine the results
Greatest overlap

• Compose your base case

 – What happens if there is only one interval?
Greatest overlap

• Compose your base case
 – What happens if there is only one interval?
 • If n=1, then return 0
Greatest overlap

• Break the problem into smaller pieces
 – Would knowing the result on smaller problems help with knowing the solution on the original problem?
 – In this stage, let’s keep the combine part in mind
 – How would you break the problem into smaller pieces?
Greatest overlap

• Break the problem into smaller pieces
 – Would it be helpful to break the problem into two depending on the starting value?
Greatest overlap

• Break the problem into smaller pieces
 – Sort the list and break it into lists each of size n/2.
 • [10,15],[10,29],[12,22],[17,50],[23,51],[27,35],[31,32],[45,57]
Greatest overlap

• Break the problem into smaller pieces
 – Sort the list and break it into lists each of size \(n/2 \).
 • \([10,15],[10,29],[12,22],[17,50],[23,51],[27,35],[31,32],[45,57]\)
 – Let’s assume we can get a divide and conquer algorithm to work. Then what information would it give us to recursively call each subproblem?
Greatest overlap

- Break the problem into smaller pieces
 - Let’s assume we can get a divide and conquer algorithm to work. Then what information would it give us to recursively call each subproblem?
 - \(\text{overlapDC}([10,15],[10,29],[12,22],[17,50]) = 13 \)
 - \(\text{overlapDC}([23,51],[27,35],[31,32],[45,57]) = 9 \)

\[
29-17+1=13
\]
\[
35-27+1=9
\]
Greatest overlap

• Break the problem into smaller pieces
 • overlapDC([10,15],[10,29],[12,22],[17,50])=13
 • overlapDC([23,51],[27,35],[31,32],[45,57])=9
 – Is this enough information to solve the problem? What else must we consider?
Greatest overlap

- Break the problem into smaller pieces
 - \(\text{overlapDC}([10,15],[10,29],[12,22],[17,50])=13 \)
 - \(\text{overlapDC}([23,51],[27,35],[31,32],[45,57])=9 \)

- The greatest overlap overall may be contained entirely in one sublist or it may be an overlap of one interval from either side

\[
\begin{align*}
29-17+1 &= 13 \\
35-27+1 &= 9
\end{align*}
\]
Greatest overlap

• Combine the results
 – So far, we have split up the set of intervals and recursively called the algorithm on both sides. The runtime of this algorithm satisfies a recurrence that looks something like
 \[T(n) = 2T\left(\frac{n}{2}\right) + O(???) \]
 – What goes into the \(O(???) \)?
Greatest overlap

• Combine the results
 – So far, we have split up the set of intervals and recursively called the algorithm on both sides. The runtime of this algorithm satisfies a recurrence that looks something like

 \[T(n) = 2T\left(\frac{n}{2}\right) + O(???) \]

 – What goes into the \(O(???) \)?
 – How long does it take to “combine”. In other words, how long does it take to check if there is not a bigger overlap between sublists?
Greatest overlap

• Combine the results

 – What is an efficient way to determine the greatest overlap of intervals where one is red and the other is blue?
Greatest overlap

• Combine the results
 – What is an efficient way to determine the greatest overlap of intervals where one is red and the other is blue?

Compare green interval with all blue intervals
Greatest overlap between sets

Let’s formalize our algorithm that finds the greatest overlap of two intervals such that they come from different sets sorted by starting point.

procedure overlapbetween (\([a_1, b_1], \ldots [a_\ell, b_\ell], [c_1, d_1], \ldots [c_k, d_k]\))

\(a_1 \leq a_2 \leq \cdots \leq a_\ell \leq c_1 \leq c_2 \leq \cdots \leq c_k\)
Greatest overlap between sets

- Let’s formalize our algorithm that finds the greatest overlap of two intervals such that they come from different sets sorted by starting point

procedure overlapbetween (\([a_1, b_1], \ldots, [a_{\ell}, b_{\ell}], [c_1, d_1], \ldots, [c_k, d_k]\))

\((a_1 \leq a_2 \leq \cdots \leq a_{\ell} \leq c_1 \leq c_2 \leq \cdots \leq c_k)\)

if \(k==0\) or \(\ell == 0\) then return 0

\(\min c = c_1\)

\(\max b = 0\)

\(\text{olap} = 0\)

for \(i\) from 1 to \(\ell\):

\(\text{if maxb} < b_i:\)

\(\max b = b_i\)

for \(j\) from 1 to \(k\):

\(\text{if olap} < \text{overlap}(\min c, \max b, [c_k, d_k]):\)

\(\text{olap} = \text{overlap}(\min c, \max b, [c_k, d_k])\)

return \(\text{olap}\)
Next lecture

• Divide and conquer algorithms
 – Reading: Chapter 2