Greedy Algorithms

CSE 101: Design and Analysis of Algorithms
Lecture 10
CSE 101: Design and analysis of algorithms

• Greedy algorithms
 – Reading: Kleinberg and Tardos, sections 4.1, 4.2, and 4.3
• Homework 4 is due today, 11:59 PM
• Homework 5 will be assigned today
 – Due Nov 6, 11:59 PM
Techniques to prove optimality

• We will look at a number of general methods to prove optimality
 – Greedy modify the solution (also referred to as greedy exchange): most general
 – Greedy stays ahead: more intuitive
 – Greedy achieves the bound: also comes up in approximation, linear programming, network flow

• Which one to use is up to you, but modify the solution applies almost universally. Others can be easier, but only work in special cases.
Problem specification

• Design an algorithm that uses the greedy choice of picking the next available event with the earliest end time
 – Instance: \(n \) events \(E_1, \ldots, E_n \) each with a start time \(s \) and end time \(f \); \(E_i = (s_i, f_i) \)
 – Solution format: list of events
 – Constraints: events cannot overlap
 – Objective: maximize the number of events
Greedy stays ahead

• Instead of just first greedy choice, compare all of the greedy algorithm’s solution to all of the other algorithm’s solution

What to show: \(L \geq k \), but indirectly by comparing some progress measure of GS to OS

In what way is \(E_1 \) better than \(J_1 \), \(E_2 \) better than \(J_2 \), etc.?
Greedy stays ahead

• Suppose input is a set of n events \(\{A_1, ..., A_n\} \) for some \(n \geq 1 \)

• Given: an arbitrary solution \(\text{OS} = \{J_1, ..., J_k\} \) ordered by finish time and greedy solution \(\text{GS} = \{E_1, ..., E_L\} \) ordered by finish time

• Claim: \(\text{Finish}(E_i) \leq \text{Finish}(J_i) \) for all \(i \geq 1 \)
Greedy stays ahead

Claim: Finish \((E_i) \leq \text{Finish}(J_i)\) for all \(i \geq 1\)

- **Base case:** \(\text{Finish}(E_1) \leq \text{Finish}(J_1)\) because of greedy choice
- **Inductive hypothesis:** Suppose that for some \(i \geq 1\), \(\text{Finish}(E_i) \leq \text{Finish}(J_i)\)
- **What to show:** \(\text{Finish}(E_{i+1}) \leq \text{Finish}(J_{i+1})\)
Greedy stays ahead

Claim: Finish \(E_i \) ≤ Finish\(J_i \) for all \(i \geq 1 \)

- What to show: \(\text{Finish}(E_{i+1}) \leq \text{Finish}(J_{i+1}) \)
- \(\text{Finish}(J_i) \leq \text{Start}(J_{i+1}) \)
- \(\text{Finish}(E_i) \leq \text{Finish}(J_i) \), inductive hypothesis
- So, \(\text{Finish}(E_i) \leq \text{Finish}(J_i) \leq \text{Start}(J_{i+1}) \)
- \(E_{i+1} \) is the first to finish after \(\text{Finish}(E_i) \), definition of greedy
 - \(J_{i+1} \) is in the set of available events, so \(\text{Finish}(E_{i+1}) \leq \text{Finish}(J_{i+1}) \)
Greedy stays ahead

• Suppose by contradiction that OS has more events than GS
 – \(|OS| = k, |GS| = L\)
• In other words, \(L < k\)
• \(E_L\) is the final greedy choice, so there are no other events that end after \(E_L\) that do not conflict with \(E_L\)
• By inductive argument: Finish\((E_L) \leq \text{Finish}(J_L)\)
• Finish \((J_L) \leq \text{Start}(J_{L+1})\)
• Then greedy would not end with \(E_L\) because \(J_{L+1}\) is still available. Contradiction
Greedy stays ahead template

• Define progress measure
• Order the decisions in OS to line up with GS
• Prove by induction that the progress after the i-th decision in GS is at least as big as that in OS
• Assume that OS is strictly better than GS
• Use progress argument to arrive at contradiction
Greedy achieves the bound

- This is a proof technique that does not work in all cases
- The way it works is to argue that when the greedy solution reaches its peak cost, it reveals a bound
- Then, show this bound is also a lower bound on the cost of any other solution
- So we are showing: $\text{Cost(GS)} \leq \text{Bound} \leq \text{Cost (OS)}$
- Allows the two inequalities to be separated
Event scheduling with multiple rooms

• Suppose you have a conference to plan with n events and you have an unlimited supply of rooms. How can you assign events to rooms in such a way as to minimize the number of rooms?

• Greedy choice:
 – Number the rooms from 1 to n
 – Sort the events by earliest start time
 – Put the first event in room 1
 – For events 2, ..., n, put each event in the smallest numbered room that is available
Event scheduling with multiple rooms

• Suppose you have a conference to plan with n events and you have an unlimited supply of rooms. How can you assign events to rooms in such a way as to minimize the number of rooms?

• Instance: Start and end times of n events
• Solution Format: an assignment of each event to a room
• Constraints: No two events that overlap are assigned to the same room
• Objective: minimize the number of rooms used
Implementation

• Sort both start and finish times of events
• Keep priority queue of available rooms ordered by room number
• Go through sorted lists of times
• When an event starts, assign it to the smallest room in the priority queue, and delete that room from the priority queue
• When an event finishes, insert the room it is scheduled in back into the priority queue

• N inserts, N deletes, $O(N \log N)$ time to sort: $O(N \log N)$ time total
When does GS reach peak cost?

Why did we have to use four rooms? What happened at the time we reached "peak cost"?
Defining the lower bound

• Let t be a certain time during the conference
• Let $B(t)$ be the set of all events E such that $t \in E$
• Let R be the number of rooms you need for a valid schedule
• Then, $R \geq |B(t)|$ for all t
• Proof
 – For any time t, let $E_{i_1}, ..., E_{i_{|B(t)|}}$ be all the events in $B(t)$
 – Then, since they all are happening at time t, they all have to be in different rooms, so $R \geq |B(t)|$
• Let $L = \max_{t} |B(t)|$. Then, L is the lower bound on the number of rooms needed.
Greedy achieves the bound

• Let k be the number of rooms picked by the greedy algorithm. Then, at some point t, $|B(t)| \geq k$ (i.e., there are at least k events happening at time t).

• Proof
 – Let t be the starting time of the first event to be scheduled in room k
 – Then, by the greedy choice, room k was the least number room available at that time
 – This means at time t there was an event happening in room 1, room 2, ..., room k-1. And, an additional event happening in room k
 – Therefore, $|B(t)| \geq k$ at some point t
Conclusion: greedy is optimal

• The greedy algorithm uses the minimum number of rooms
 – Let GS be the greedy solution, $k = \text{Cost(GS)}$ the number of rooms used in the greedy solution
 – Let k be the number of rooms the greedy algorithm uses and let R be any valid schedule of rooms. There exists a t such that at all time, k events are happening simultaneously. So R uses at least k rooms. So, R uses at least as many rooms as the greedy solution. Therefore, the greedy solution is optimal.
Conclusion: greedy is optimal

- Let GS be the greedy solution, $k = \text{Cost}(GS)$ the number of rooms used in the greedy solution.
- Let OS be any other schedule, $R = \text{Cost}(OS)$ the number of rooms used in OS.
- By the bounding lemma, $R \geq L = \max_t |B(t)|$.
- By the achieves the bound lemma, $k = |B(t)| \leq L$ for some t.
- Putting the two together, $\text{Cost}(GS) = k \leq R = \text{Cost}(OS)$.
- Thus, the greedy solution is optimal.
Greedy achieves the bound

- This is a proof technique that does not work in all cases
- The way it works is to argue that when the greedy solution reaches its peak cost, it reveals a bound
- Then, show this bound is also a lower bound on the cost of any other solution
- So we are showing: Cost(GS) ≤ Bound ≤ Cost (OS)
- Allows the two inequalities to be separated
KRUSKAL’S ALGORITHM,
PROOF OF CORRECTNESS
Lemma: Let g be the first greedy decision. Let OS be any legal solution that does not pick g. Then, there is a solution OS' that does pick g and OS' is at least as good as OS.

1. State what we know: Definition of g. OS meets constraints.
2. Define OS' from OS, g This requires creativity
3. Prove that OS' meets constraints (use 1, 2)
4. Compare value/cost of OS' to OS (use 2, sometimes 1)
Correctness proof, greedy modify the solution

• The first greedy choice is the smallest weight edge. Let e be the smallest weight edge and let OT be any spanning tree that does not contain e.
Correctness proof, greedy modify the solution

• The first greedy choice is the smallest weight edge. Let e be the smallest weight edge and let OT be any spanning tree that does not contain e.

• Construct OT' by adding e to OT then removing any other edge e' in the cycle that was created.
Correctness proof, greedy modify the solution

• The first greedy choice is the smallest weight edge. Let e be the smallest weight edge and let OT be any spanning tree that does not contain e.
• Construct OT' by adding e to OT then removing any other edge e' in the cycle that was created.
• We must show that
 1. OT' is a spanning tree
 2. $w(OT') \leq w(OT)$
Correctness proof, greedy modify the solution

• We must show that
 1. OT' is a spanning tree
 2. $w(OT') \leq w(OT)$
Correctness proof, greedy modify the solution

- We must show that
 1. OT' is a spanning tree
 2. $w(OT') \leq w(OT)$

1. We have taken out an edge and added in an edge. We have a graph on n vertices with n-1 edges that does not contain a cycle. Therefore, the graph is a spanning tree.
Correctness proof, greedy modify the solution

• We must show that
 1. OT' is a spanning tree
 2. $w(OT') \leq w(OT)$

1. We have taken out an edge and added in an edge. We have a graph on n vertices with $n-1$ edges that does not contain a cycle. Therefore, the graph is a spanning tree.

2. $w(OT') = w(OT) + w(e) - w(e') \leq w(OT)$
Correctness proof, greedy modify the solution

- We must show that
 1. OT' is a spanning tree
 2. $w(OT') \leq w(OT)$

1. We have taken out an edge and added in an edge. We have a graph on n vertices with $n-1$ edges that does not contain a cycle. Therefore, the graph is a spanning tree.

2. $w(OT') = w(OT) + w(e) - w(e') \leq w(OT)$
General greedy modify the solution template, induction

- **Lemma**: Let g be the first greedy decision. Let OS be any legal solution that does not pick g. Then, there is a solution OS' that does pick g and OS' is at least as good as OS.

- **Prove by strong induction on instance size that GS is optimal**

- **Induction step**
 1. Let g be first greedy decision. Let I' be “rest of problem given g”
 2. $GS = g + GS(I')$
 3. OS is any legal solution
 4. OS' is defined from OS by the modify the solution argument (if OS does not include g)
 5. $OS' = g +$ some solution on I'
 6. Induction: $GS(I')$ at least as good as some solution on I'
 7. GS is at least as good as OS', which is at least as good as OS
Induction step

• If G has at most two vertices, any solution is optimal
• Assume Kruskal’s algorithm is optimal for any graph with n-1 vertices
• Let e be the smallest weight edge
• G’: Contract the edge e in G, treating its two vertices as one vertex
Contraction

e
Contraction

• Contracted graph is not necessarily simple
Induction on number of vertices

• Base case: Kruskal’s algorithm generates a minimum spanning tree on any graph with at most two vertices

• Inductive Hypothesis: Suppose Kruskal’s algorithm generates a minimum spanning tree for every graph of k vertices for some $k \geq 2$
Induction on number of vertices

- Inductive step: Let G be an arbitrary graph with k+1 vertices. Let OT be any spanning tree of G.
- Then, by the greedy modify the solution lemma, there exists a spanning tree OT' that uses the lightest edge e and $w(OT') \leq w(OT)$
- Contract the two endpoints of e into one vertex and call the resulting graph G'
- Then, since G' has k vertices, kruskal(G') will generate a minimum spanning tree of G

$$w(OT) \geq w(OT') = w(e) + w(S(G')) \geq w(e) + w(kruskal(G')) = w(kruskal(G))$$
Next lecture

• Greedy algorithms
 – Reading: Kleinberg and Tardos, sections 4.1, 4.2, and 4.3

• Divide and conquer algorithms
 – Reading: Sections 2.1 and 2.2