Instructions

This homework assignment may be completed in groups of size 1-4. The solutions must be typed (using a computer.) Figures and graphs can be handdrawn. For algorithm descriptions we require a high-level English description AND an implementation description. If you find it necessary to also include a pseudocode to help understand your description then feel free to include it.

Please refer to the course page for requirements in writing up answers for algorithm questions.

1. (25 points) Consider the following programs:

 Alg1(n):
 For i = 1 to n For j = 1 to n
 If i + j <= n
 Print((i,j))

 Alg2(n):
 For i = 1 to n For j = 1 to n
 If i * j <= n
 Print((i,j))

 For each of these algorithms, compute the asymptotic number of printed lines in the form Θ().

2. (25 points) The Fibonacci numbers $F_0, F_1, ..., F_n$ are defined by

 $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$

 Use induction to prove that:
 (a) Use induction to prove that $F_n \geq 2^{0.5n}$ for $n \geq 6$
 (b) Use induction to prove that $F_n \leq 2^n$ for $n \geq 0$
 (c) Based on the previous parts, write an upperbound of F_n using O notation and a lower bound using Ω notation.

3. (25 points) Let G be an undirected graph with nodes $v_1, ... v_n$. The adjacency matrix representation for G is the $n \times n$ matrix M given by: $M_{i,j} = 1$ if there is an edge from v_i to v_j, and $M_{i,j} = 0$. A triangle is a set $\{v_i, v_j, v_k\}$ of 3 distinct vertices so that there is an edge from v_i to v_j, another from v_j to v_k and a third from v_k to v_i. Give and analyze an algorithm for determining if a graph G, given by its adjacency matrix representation, has a triangle. Analyze your algorithm’s worst-case performance first in terms of just the number of nodes n of the graph, then in terms of n and the number of edges m of the graph. Your algorithm should be faster when $m << n^2$.

4. (25 points) The reverse of a directed graph G is another directed graph G^R with the same vertex set with the property that if (u,v) is an edge in G then (v,u) is an edge in G^R.

Consider the following algorithm that takes the adjacency list $A[v_1, v_2, \ldots, v_n]$ of a directed graph G as input and outputs an adjacency list of G^R.

```
procedure reversegraph($A[v_1, v_2, \ldots, v_n]$)
    initialize a list $A^R[v_1, \ldots, v_n]$
    for each $i = 1 \ldots n$:
        for each $u \in A[v_i]$:
            add $v_i$ to the list $A^R[u]$
    return $A^R$
```

(a) Justify the correctness of this algorithm

(b) Analyze the runtime of this algorithm assuming that G has n vertices and m edges.