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ABSTRACT
Heterogeneous Information Network (HIN) is a natural and general
representation of data in modern large commercial recommender
systems which involve heterogeneous types of data. HIN based
recommenders face two problems: how to represent the high-level
semantics of recommendations and how to fuse the heterogeneous
information to make recommendations. In this paper, we solve
the two problems by first introducing the concept of meta-graph
to HIN-based recommendation, and then solving the information
fusion problem with a “matrix factorization (MF) + factorization
machine (FM)” approach. For the similarities generated by each
meta-graph, we perform standard MF to generate latent features for
both users and items. With different meta-graph based features, we
propose a group lasso regularized FM to automatically learn from
the observed ratings to effectively select useful meta-graph based
features. Experimental results on two real-world datasets, Amazon
and Yelp, show the effectiveness of our approach compared to state-
of-the-art FM and other HIN-based recommendation algorithms.

CCS CONCEPTS
•Information systems→ Collaborative filtering; Recommender
systems; •Computer systems organization → Heterogeneous
(hybrid) systems;

KEYWORDS
Recommendation system; Collaborative filtering; Heterogeneous
information networks; Factorization machine.

1 INTRODUCTION
Recommendation on the platforms like Amazon or Yelp refers to
the problem of recommending items, such as products or businesses,
to users so that the platforms can make more revenue when
users consume more items. Essentially if we consider users and
items as a bipartite graph, this is a link prediction problem on
heterogeneous types of entities, i.e., User and Item. Nowadays
large commercial recommender systems often incorporate richer
heterogeneous information. For example, on Amazon, the products
have categories, or they can belong to brands, and users can write

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD, Halifax, Canada
© 2017 Copyright held by the owner/author(s). 978-1-4503-4887-4/17/08. . . $15.00
DOI: 10.1145/3097983.3098063

reviews to products. On Yelp, users can follow other users to form a
social network, the location based businesses have categories, and
users can write reviews to businesses as well. Then, real-world
recommender systems often need to consider richer semantics with
different types of information that are enabled and collected by the
platforms. This richer heterogeneity thus requires the development
of a mathematical representation to formulate it and a tool to
compute over it.

Heterogeneous information networks (HINs) [30] have been
proposed as a general data representation for many different
types of data, such as scholar network data [32], social network
data [13], patient network data [3], or knowledge graph data [5].
At the beginning, HINs were used to handle entity search and
similarity measure problems [32], where the query and result
entities are assumed to be of the same type (e.g., using Person to
search Person). Later, it was extended to handle heterogeneous
entity recommendation problems (i.e., recommending Items to
Users) [29, 39, 40]. To incorporate rich semantics, HINs first builds
a network schema of the heterogeneous network. For example, for
Yelp, a network schema is defined over the entity types User, Review,
Word, Business, etc. Then, the semantic relatedness constrained by
the entity types can be defined by the similarities between two
entities along meta-paths [32]. For traditional collaborative filtering,
if we want to recommend businesses to users, we can build a
simple meta-path Business→User and learn from this meta-path
to make generalizations. From HIN’s schema, we can define more
complicated meta-paths like User → Review → Word → Review →
Business. This meta-path defines a similarity to measure whether a
user tends to like a business if his/her reviews are similar to those
written by other users for the same business.

When applying meta-path based similarities to recommender
systems, there are two major challenges. First, meta-path may not
be the best way to characterize the rich semantics. Figure 1 shows a
concrete example, where a meta-path User → Review → Word →
Review → Business is used to capture users’ similarity since they
both write reviews and mention the seafood it serves. However,
if we want to capture the semantic that U1 and U2 rate the same
type of business (such as Restaurant) or in the same city (such
as New Orleans), and at the same time, they mention the same
aspect (such as seafood), the meta-path fails. Thus, we need a
better way to capture such complicated semantics. Recently, Fang
et al. [6] and Huang et al. [10] have proposed to use meta-graph (or
meta-structure) to compute similarity between homogeneous type of
entities (e.g., using Person to search Person) over HINs, which can
capture more complex semantics that meta-path cannot. Thus, in
this paper, we apply meta-graph to heterogeneous recommendation.
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Figure 1: Example of HIN, which is built based on the web page
for Royal House on Yelp.

However, how to use the similarities between heterogeneous types
of entities developed from HINs in recommendation is still unclear,
which results in the second challenge.

Second, different meta-paths or meta-graphs result in different
similarities. How to assemble them in an effective way is another
challenge. Currently, there are two principled ways. Considering our
goal is to achieve accurate prediction of User and Item ratings,
which can be formulated as a matrix completion problem of
the user-item rating matrix. One way to predict the missing
ratings based on HIN is to use meta-paths to generate a lot of
ad-hoc alternative similarities for user-item matrix, and then learn
a weighting mechanism for different meta-paths to combine the
similarities explicitly to approximate the observed user-item rating
matrix [29]. This approach does not consider implicit factors of
each meta-path, and each alternative similarity matrix could be very
sparse to contribute to the final ensemble. The other way is to first
factorize each user-item similarity matrix computed based on each
meta-path, and then use the latent features to recover a new user-item
matrix, which is used for ensemble [40]. This method resolves the
sparsity problem of each similarity matrix. However, it does not fully
make use of the latent features since when ensemble is performed,
each meta-path cannot see other’s variables but only the single value
predicted by the others.

To address the above challenges, we propose a new principled
way to fully combine different latent features. First, instead of
using meta-paths for heterogeneous recommendation [29, 40], we
introduce the concept of meta-graph to the recommendation problem,
which allows us to incorporate more complex semantics into our
prediction problem. Second, instead of computing the recovered
matrices directly, we use all of the latent features of all meta-
graphs. Inspired by the famous work PCA+LDA used for face
recognition [2], which first uses PCA (principle component analysis)
to perform unsupervised dimensionality reduction, and then applies
LDA (linear discriminant analysis) to discover further reduced
dimensions guided by supervision, we apply matrix factorization
(MF) + factorization machine (FM) [25] to our recommendation
problem. For each meta-graph, we first compute the user-item
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Figure 2: Example of HIN Schema. A: aspect extracted from
reviews; R: reviews; U: users; B: business; Cat: category of
item; Ci: city.

similarity matrix under the guidance of the meta-graph, and then use
unsupervised (without seeing the ratings) MF to factorize it into a
set of user and item latent vectors. Then, with many different sets of
user and item vectors computed from different meta-graphs, we use
FM to assemble them to learn from the rating matrix. To effectively
select useful meta-graphs, we propose an `2,1-norm regularization
over the parameters. In this way, we can automatically determine
for new incoming problems which meta-graph should be used, and
for each meta-graph generated user and item vectors, how they
should be weighted. Experimental results on two large real-world
datasets, Amazon and Yelp, show that our approach can successfully
outperform other MF-based, FM-based, and existing HIN-based
state-of-the-arts for recommendation. Our code is available at
https://github.com/HKUST-KnowComp/FMG.

2 FRAMEWORK
In this section, we introduce our framework to handle HIN-based
recommendation.

2.1 Meta-graph based Similarity
The definitions of HIN and HIN Schema (a schema graph of entity
types and their relations) have been introduced in [32]. Here we
skip the formal definition and only illustrate the original HIN in
Figure 1 and the corresponding schema in Figure 2. Here we focus
on the concepts related to our paper. First, we formally define the
meta-graph in HIN for recommendation.

Definition 2.1. Meta-graph. A meta-graph M is a directed
acyclic graph (DAG) with a single source node ns (i.e., with in-
degree 0) and a single sink (target) node nt (i.e., with out-degree
0), defined on an HIN G = (V, E) with schema TG = (A,R ),
where V is the node set, E is the edge set, A is the node type
set, and R is the edge type set. Then we define a meta-graph
as M = (VM , EM ,AM ,RM ,ns ,nt ), where VM ⊆ V , EM ⊆ E
constrained by AM ⊆ A and RM ⊆ R, respectively.

We show all of the meta-graphs used in this paper for both
Amazon and Yelp in Figure 3. We can see that they are DAGs
with U (User) as the source node and B (Business for Yelp and
Product for Amazon) as the target node. Here we useM3 andM9
used on Yelp data to illustrate the computation problem.

Given the above definition of meta-graph, we want to compute
the similarities between the source and the target nodes. Originally,

https://github.com/HKUST-KnowComp/FMG
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Figure 3: Meta-graphs used for Amazon and Yelp datasets.

commuting matrices [32] have been used to compute the counting-
based similarity matrix of a meta-path. Suppose we have a meta-
path P = (A1,A2, . . . ,Al ), where Ai ’s are node types in A. Then
we can define a matrix WAiAj as the adjacency matrix between
type Ai and type Aj . Then, the commuting matrix for path P is
CP = WA1,A2 · WA2,A3 · ... · WAl−1,Al . For example, for M3
in Figure 3(a), CM3 = WU B · W>U B · WU B , where WU B is the
adjacency matrix between type U and type B. This shows that the
counting-based similarities for a meta-path can be computed by
the multiplication of a sequences of matrices like the above WU B .
In practice, we can implement this in a very efficient way if the
adjacency matrices W’s are sparse.

For meta-graphs, the problem becomes more complicated. For
example, forM9 in Figure 3(a), there are two ways to pass through
the meta-graph, which are (U ,R,A,R,U ,B) and (U ,R,B,R,U ,B).
Note that R represents the entity type Review in HIN. Here in the path
(U ,R,A,R,U ,B), (R,A,R) means that if two reviews both mention
the same A (Aspect), then they have some similarity. Similarly,
in (U ,R,B,R,U ,B), R,B,R means that if two reviews both rate the
same B (Business), then they have some similarity as well. We
should define our logic of similarity when there are multiple ways
for a flow passing through the meta-graph from source node to
the target one. When there are two paths, we can allow a flow to
pass through either path, or we constrain a flow to satisfy both of
them. By analyzing the former strategy, we find that it is similar
to simply split such meta-graph into multiple meta-paths and then
adopt our later computation. Thus, we choose the latter, which
requires one more matrix operation than simple multiplication, i.e.,
the Hadamard product, or element-wise product. Algorithm 1 depicts
the algorithm for computing the counting-based similarity forM9
in Figure 3(a), where � is the Hadamard product. After obtaining
CSr , it is easier to obtain the whole commuting matrix CM9 by the

multiplication of a sequence of matrices. In practice, not limited
toM9 in Figure 3(a), the meta-graph defined in this paper can be
computed by two operations (Hadamard product and multiplication)
on the corresponding matrices.

Algorithm 1 Computing commuting matrix for CM9 .

1: Compute CP1 : CP1 =WRB ·W>RB ;
2: Compute CP2 : CP2 =WRA ·W>RA;
3: Compute CSr : CSr = CP1 � CP2 ;
4: Compute CM9 : CM9 =WUR · CSr ·W

>
UR ·WU B .

By computing the similarities between all users and items along
the meta-graph M, we can obtain a user-item similarity matrix
R̂ ∈ Rm×n , where R̂i j represents the similarity between user ui and
item bj along the meta-graphM, and m and n are the number of
users and items, respectively. Then by designing L meta-graphs,
we can get L different user-item similarity matrices, denoted by
R̂1
, . . . , R̂L

.

2.2 Meta-graph based Latent Features
After we obtain L different user-item similarity matrices, we use
matrix factorization to obtain the latent features of users and items
to reduce the noise and fix the sparsity problem of the original
similarity matrices. State-of-the-art MF techniques can be used
for the task [14, 22, 36]. Based on the assumption that the users’
preferences are controlled by a small number of factors, the similarity
matrix R can be factorized into two low-rank matrices, U and B,
which represent the latent features of users’ preferences and items,
respectively. By solving the optimizing problem in (1), the low



dimensional representations of users and items can be obtained:

min
U,B

1
2
| |PΩ (UB> − R) | |2F +

λu
2
| |U| |2F +

λb
2
| |B| |2F , (1)

where observed positions are indicated by 1’s in Ω ∈ {0, 1}um×bn ,
and [PΩ (X)]i j = Xi j if Ωi j = 1, and 0 otherwise. λu and λb
are the hyper-parameters that control the influence of Frobenius
norm regularization to avoid overfitting. For L meta-graph based
similarities between users and items, we can obtain L groups of latent
features of users and items, denoted as U(1) ,B(1) , ...,U(L) ,B(L) .

2.3 Recommendation Model
After we obtain L groups of user and item latent features, for a
sample xn in the observed ratings, i.e., a pair of user and item,
denoted by ui and bj , we concatenate all of the corresponding user
and item features from all of the L meta-graphs:

xn = u(1)
i , ...,u

(l )
i , ...,u

(L)
i︸                    ︷︷                    ︸

L×F

b(1)
j , ...,b

(l )
j , ...,b

(L)
j︸                    ︷︷                    ︸

L×F

, (2)

where F is the rank used to factorize every similarity matrix by
(1), and u(l )

i and b(l )
j , respectively, represent user and item latent

features generated from l-th meta-graph. Note that F can be different
for different matrices, but we keep it constant for simplicity. xn

represents the feature vector of the n-th sample after concatenation.
Then each user and item can be represented by the L × F latent
features, respectively.

Given all of the features in (2), the rating for the sample xn based
on FM [25] is computed as follows:

ŷn (w,V) = w0 +
d∑
i=1

wix
n
i +

d∑
i=1

d∑
j=i+1

〈vi , vj 〉xni x
n
j , (3)

where w0 is the global bias, w ∈ Rd , representing the first-order
weights for the features, and V = [vi ] ∈ Rd×K represents the second-
order weights to model the interactions across different features. 〈·, ·〉
is the dot product of two vectors of size K . vi is the i-th row of the
matrix V, which describes the i-th variable with K factors. d = 2LF
represents the total number of features generated by the L meta-
graph based similarity matrices. F is the rank used to factorize every
similarity matrix. xni is the i-th feature in xn . The parameters can
be learned by minimizing the mean square loss:

min
w,V

N∑
n=1

(yn − ŷn (w,V))2, (4)

where yn is an observed rating for the n-th sample. N is the number
of all the observed ratings.

There are two problems when applying the FM model to the
meta-graph based latent features. The first problem is that it may
bring noise when working with many meta-graphs thus impairing
the predicting capability of the model. Moreover, in practice,
some meta-graphs can be useless since information provided by
some meta-paths can be covered by others. The second problem
is the computational cost. All of the features are generated by
standard matrix factorization, which means that the design matrix,
i.e., features fed to FM, are dense. It increases the computational

cost for learning the parameters of the model as well as that of online
recommendation.

To alleviate the above two problems, we propose a novel
regularization for FM, i.e., the group lasso regularization [42], which
is a feature selection method on a group of variables. The group
lasso regularization of parameters p is defined as follows:

Φ(p) =
G∑
д=1
| |pIд | |2, (5)

where Iд is the index set belonging to the predefined д-th group of
variables, д = 1, 2, ...,G, and | | · | |2 is the `2-norm. In our model, the
groups correspond to the meta-graph based features. For example,
U(l ) and B(l ) are the user and item latent features generated by the
l-th meta-graph. For a pair of user i and item j, the latent features
are u(l )i and b(l )i . There are two corresponding groups of variables in
w and V according to (3). With L meta-graphs, the features of users
and items from every single meta-graph can be put in a group. We
have in total 2L groups of variables in w and V, respectively.

For the first-order parameters w in (3), which is a vector, the
group lasso is applied to the subset of variables in w. Then we have:

Φw (w) =
2L∑
l=1
| |wl | |2, (6)

where wl ∈ R
F , which models the weights for a group of user or

item features from one meta-graph. For the second-order parameters
V in (3), we have the regularizer as:

ΦV (V) =
2L∑
l=1
| |Vl | |F , (7)

where Vl ∈ RF×K , the l-th block of V corresponding to the l-th
meta-graph based features in a sample, and | | | |F is the Frobenius
norm.

With group lasso regularizations, during the training process, our
model can automatically select useful features and remove redundant
ones in group, i.e. generated by different meta-graphs. In the
selection process, unuseful features are removed in the unit of a
group.

2.4 Comparison with Previous Latent Feature
based Model

Previous approaches of recommendation based on HIN [40] also
applied matrix factorization to generate latent features from different
meta-paths and predict the rating by a weighted ensemble of dot
product of user and item latent features from every single meta-path:

r̂ (ui ,bj ) =
L∑
l=1

θl · û
(l )
i · b̂

(l )T
j , (8)

where r̂ (ui ,bj ) is the predicted rating for user ui and bj , L is
the number of meta-paths used, and θl is the weight for the l-th
meta-path latent features. However, here the predicting method is
not adequate, as it fails to capture the interactions between inter-
meta-graph features, i.e. features across different meta-graphs, as
well as the intra-meta-graph features, i.e. features inside a single
meta-graph. It may decrease the prediction ability of all of the user
and item features.



Algorithm 2 nmAPG [17] algorithm for (9).
1: Initiate w0, V0 as Gaussian random matrices;
2: w̄1 = w1 = w0, V̄1 = V1 = V0, c1 = h (w1, V1); q1 = 1, δ = 10−3,

a0 = 0, a1 = 1, α = 10−7;
3: for t = 1, 2, 3, . . . , T do
4: yt = wt +

at−1
at (w̄t − wt ) +

at−1−1
at (wt − wt−1);

5: Yt = Vt +
at−1
at (V̄t − Vt ) +

at−1−1
at (Vt − Vt−1);

6: w̄t+1 = proxαλΦw (wt − α∇wh (wt , Vt ));
7: V̄t+1 = proxαλΦV (Vt − α∇Vh (wt , Vt ));
8: ∆t = ‖w̄t+1 − yt ‖22 + ‖V̄t+1 − Yt ‖2F
9: if h (w̄t+1, V̄t+1) ≤ ct − δ∆t ; then

10: wt+1 = w̄t+1, Vt+1 = V̄t+1;
11: else
12: ŵt+1 = proxαλΦw (wt − α∇wh (wt , Vt ));
13: V̂t+1 = proxαλΦV (Vt − α∇Vh (wt , Vt ));

14: if h (ŵt+1, V̂t+1) < h (w̄t+1, V̄t+1) then
15: wt+1 = ŵt+1;
16: Vt+1 = V̂t+1;
17: else
18: wt+1 = w̄t+1;
19: Vt+1 = V̄t+1;
20: end if
21: end if
22: at+1 =

1
2 (

√
4a2

t + 1 + 1)
23: qt+1 = ηqt + 1;
24: ct+1 =

1
qt+1

(ηqt ct + h (wt+1, Vt+1));
25: end for
26: return wT+1, VT+1.

3 MODEL OPTIMIZATION
In this section, we introduce how to solve the optimization problem.
We define our FM over meta-graph (FMG) model with the following
objective function:

h(w,V)=
N∑
n=1

(yn−ŷn (w,V))2 + λwΦw (w)+λvΦV (V). (9)

Note that in (3) we merge all of the superscripts (l )’s into subscript
without introducing confusion of the original FM model. Here, we
can see that h is non-smooth due to the use of Φw and ΦV. Besides,
as (3) is not convex on V, h is also not convex.

3.1 Optimization
To tackle the non-convex non-smooth objective function, we
propose to use the proximal gradient algorithm [23], which is
a powerful tool to handle non-convex problems, in the form of
(9). Specifically, the state-of-the-art nonmonotonous accelerated
proximal gradient (nmAPG) algorithm [17] is used. The motivation
comes from two facts. First, nonsmoothness comes from the
proposed regularizers, which can be efficiently handled since the
corresponding proximal steps have cheap closed-form solution.
Second, the acceleration technique is useful for significantly
speeding up first order optimization algorithms [17, 37], and nmAPG
is the only technique which can deal with general non-convex
problems with sound convergence guarantee. The whole procedure
is given in Algorithm 2.

Note that while both Φw and ΦV are nonsmooth in (9), they are
imposed on w and V separately. Thus, we can also perform proximal
step independently for these two regularizers [23] as follows.

proxλwΦw+λV ΦV
(w,V)=

(
proxλwΦw

(w) , proxλV ΦV
(V)

)
.

These are performed at lines 6-7 and 12-13. The closed-form
solution of proxαΦw

(·) and proxαΦV
(·) can be obtained easily from

Lemma 3.1 below. Thus, each proximal step can be solved in one
pass of all groups.

LEMMA 3.1 ([41]). The closed-form solution of p∗ = proxλΦ (z)
(Φ is defined in (5)) is given by

p∗
Iд
= max *

,
1 −

λ

‖zIд ‖2
, 0+

-
zIд ,

for all д = 1, . . . ,G.

Finally, it is easy to verify that the assumptions on the convergence
of nmAPG in [17] are satisfied. Thus, Algorithm 2 is guaranteed to
produce a critical point of (9).

3.2 Complexity Analysis
The major computational cost in the training process is to update
the gradients of all parameters including gradient calculation and
evaluation of proximal operators. In [25], the author shows that
for every single sample, computing each gradient is O (1) time,
which leads to O (Kd ) time in total for one sample, where K is the
dimensions for factorizing the second order parameters, as shown
in (3), and d = 2LF is the number of features in every sample. For
evaluating the proximal operator Φ, according to Lemma 3.1, for
each sample, each gradient also costs O (1), thus achieving O (Kd )
time by updating all gradients in one sample. Then, the total time in
one iteration is O (N (Kd + Kd )) = O (NKd ), where N is the number
of all observations. Assuming T iterations are used in total, the
overall time of the learning process is O (TNKd ).

4 EXPERIMENTS
In this section, We first introduce the datasets, evaluation metric and
experimental settings. And then show the experimental results.

4.1 Datasets
To demonstrate the effectiveness of HIN for recommendation, we
conduct experiments on four datasets with rich heterogeneous
information. The first dataset is Yelp, which is provided for the Yelp
challenge.1 Yelp is a website where a user can rate local businesses
or post photos and reviews about them. The rates fall in the range
of 1 to 5, where higher ratings mean users like the businesses while
lower rates mean users’ negative feedbacks to the businesses. Based
on the information collected, the website can recommend businesses
according to the users’ preferences. Another dataset is Amazon
Electronics,2 which is provided in [8]. As we know, Amazon highly
relies on recommendations to present interesting items to users
who are surfing on the website. In [8] many domains of Amazon
dataset are provided, and we choose the electronics domain for our
experiments. We extract subsets of entities from Yelp and Amazon

1https://www.yelp.com/dataset challenge
2http://jmcauley.ucsd.edu/data/amazon/



Table 1: Statistics of Yelp/Amazon Datasets.

Yelp-200K

Relations(A-B)
Number

of A
Number

of B
Number
of (A-B)

Avg Degrees
of A/B

User-Business 36,105 22,496 191,506 5.3/8.5
User-Review 36,105 191,506 191,506 5.3/1

User-User 17,065 17,065 140,344 8.2/8.2
Business-Category 22,496 869 67,940 3/78.2

Business-Star 22,496 9 22,496 1/2,499.6
Business-State 22,496 18 22496 1/1,249.8
Business-City 22,496 215 22,496 1/104.6

Review-Business 191,506 22,496 191,506 1/8.5
Review-Aspect 191,506 10 955,041 5/95,504.1

Amazon-200K

Relations(A-B)
Number

of A
Number

of B
Number
of (A-B)

Avg Degrees
of A/B

User-Business 59,297 20,216 183,807 3.1/9.1
User-Review 59,297 183,807 183,807 3.1/1

Business-Category 20,216 682 87,587 4.3/128.4
Business-Brand 95,33 2,015 9,533 1/4.7

Review-Business 183,807 20,216 183,807 1/9.1
Review-Aspect 183,807 10 796,392 4.3/79,639.2

Table 2: The density of rating matrices in the four datasets
Density = #Ratings

#Users×#Items .

Amazon-200K Yelp-200K CIKM-Yelp CIKM-Douban
Density 0.015% 0.024% 0.086% 0.630%

to build the HIN, which includes diverse types and relations. The
subsets of the two datasets both include around 200,000 ratings in
the user-item rating matrices. Thus, we identify them as Yelp-200K
and Amazon-200K, respectively. Besides, we also use the datasets
provided in the CIKM paper [29], which we call CIKM-Yelp and
CIKM-Douban. The statistics of our datasets are shown in Table
1. For the detailed information of CIKM-Yelp and CIKM-Douban,
we refer the user to [29]. Note that i) the number of types and
relations in the first two datasets, i.e. Amazon-200K and Yelp-200K,
we used in this paper are much more than those used in previous
works [29, 39, 40]; ii) We give the sparsity of the four datasets in
Table 2. The sparsity of the rating matrices is more severe than those
used in [29, 39, 40].

4.2 Evaluation Metric
To evaluate the recommendation performance, we adopt the root-
mean-square-error (RMSE) as our metric, which is the most popular
one for rating prediction in the recommendation literature [14, 20,
22]. RMSE is defined as follows

RMSE =

√∑
(i, j )∈Rtest (Ri j − R̂i j )

2

|Rtest |
, (10)

where Rtest is the set of all user-item pairs (i, j ) in the test set, R̂i j
is the predicted rate of user ui to item bj , and Ri j is the observed
rate of user ui to item bj in the test set. For RMSE, smaller value
means better performance.

Table 3: Recommending performance in terms of RMSE. Per-
centages in the brackets are the reduction of RMSE comparing
our approach with the corresponding approaches in the table
header.

Amazon
-200K

Yelp
-200K

CIKM
-Yelp

CIKM
-Douban

RegSVD
2.9656

(+60.0%)
2.5141

(+50.5%)
1.5323

(+27.7%)
0.7673

(+9.0%)

FMR
1.3462

(+11.9%)
1.7637

(+29.4%)
1.4342

(+22.8%)
0.7524

(+7.2%)

HeteRec
2.5368

(+53.2%)
2.3475

(+47.0%)
1.4891

(+25.6%)
0.7671

(+9.0%)

SemRec
-
-

1.4603
(+14.7%)

1.1559
(+4.2%)

0.7216
(+3.2%)

FMG 1.1864 1.2456 1.1074 0.6985

4.3 Baseline Models
We compare the following models to our approach.

• RegSVD [15]: RegSVD is the basic matrix factorization with
L2 regularization, which uses only the user-item rating matrix.
We run the implementation in Librec [7].3

• FMR [25]: FMR is the factorization machine with only the user-
item rating matrix. We adopt the method in Section 4.1.1 of [25]
to model the rating prediction task. We use the code provided
by the authors.4

• HeteRec [40]: HeteRec method is based on meta-path based
similarity between users and items. A weighted ensemble model
is learned from the latent features of users and items generated
by applying matrix factorization to the similarity matrices of
different meta-paths. We implemented it based on [40].

• SemRec [29]: SemRec is a meta-path based recommendation on
weighted HIN, which is built by connecting users and items with
the same ratings. Different models are learned from different
meta-paths, and a weight ensemble method is used to predict the
users’ ratings. We use the code provided by the authors.5

4.4 Experimental Settings
To demonstrate the capability of our model, we use the meta-graphs
shown in Figure 3. The meanings of the nodes are given in the
figures. To get the aspects from review texts, we use Gensim [24], a
topic model software to extract topics. The number of topics is set to
10 empirically. We also try other numbers and they showed similar
results. Thus, we fix the number of topics to 10 for all experiments
to make fair comparisons.

In terms of designing the experiments, we randomly split the
datasets into training and test ones by the ratio 8:2, i.e., 80% of
the whole data are used for training and the remaining 20% are for
testing. The process is repeated five times and the average RMSE of
the five rounds are reported. Our framework is implemented with
Python 2.7, and all experiments run in a Linux server with Intel i7
CPU and 32GB RAM.

3https://www.librec.net/
4http://www.libfm.org/
5https://github.com/zzqsmall/SemRec

https://www.librec.net/
http://www.libfm.org/
https://github.com/zzqsmall/SemRec
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Figure 4: Effects of λ. (a) and (b) show RMSEs with different λ’s. (c) shows the trend of sparsity. Note that at the fourth point of
x-axis we have λ = 0.05 for Yelp and λ = 0.06 for Amazon, respectively.

4.5 Recommendation Effectiveness
We show our results in Table 3. As shown in Table 2, the sparsity
of the rating matrices of our data is severe. This is important for
the rating prediction task. By comparing RMSEs of Yelp-200K and
CIKM-Yelp, we can see that the denser training data results in lower
RMSE, i.e., better performance can be obtained. This is because with
more observations in the training set, we can get more information
about the whole matrix, leading to more accurate predicted ratings
of the users to the items. Note that the reason why we did not report
the result of SemRec on Amazon-200K is that the programs crashed
on Amazon-200K in a server with 128G memory due to the large
numbers of users and items as shown in Table 1.

From Table 3, we can see that comparing to RegSVD and
FMR, which only use the rating matrix, SemRec and FMG, which
use additional heterogeneous information by meta-graphs, are
significantly better. Especially, the sparser the rating matrix, the
more useful the additional information incorporated. For example,
on Amazon-200K, FMG outperforms RegSVD by 60%, while for
CIKM-Douban, the percentage of RMSE decreasing is 9%. Note
that the performance of HeteRec is worse than FMR, despite the fact
that we have tried our best to tune the models. The reason is that, as
we show in Section 2.3, using a weighting ensemble of dot product
of latent features may lose information among the meta-graphs and
fail to avoid noise caused by too many meta-graphs.

In [29], the authors reported that SemRec also outperforms a
series of recommendation baselines including methods using meta-
path similarity as regularization terms [39]. Thus, the performance
improvement of our FMG method is more than what have been
shown here. When comparing the results of FMG and SemRec,
we find that the performance gap between them are not that large,
which means that SemRec is still a good method for rating prediction,
especially when comparing SemRec to the other three baselines. The
good performance of SemRec may be attributed to two reasons. First,
incorporating rating values into HIN leads to a weighted HIN, which
may better capture the meta-graph or meta-path based similarity.
Currently, FMG ignores the rating values, so it remains unknown
whether it can further decrease RMSE if we adopt a similar approach
to incorporate rating values into HIN. We leave it as future work.

Second, the meta-graphs SemRec exploits are all of the style like
U → ∗ ← U → B, which have a good capability of predication. In
the Section 4.6, we will show that FMG can automatically select
features constructed by meta-graphs like U → ∗ ← U → B while
removing those by meta-graphs like (U → B → ∗ ← B). In
Section 4.7, we further study the prediction ability of each meta-
graph, and also show that meta-graphs with style like U → ∗ ←
U → B are better than those like U → B → ∗ ← B.

4.6 The Parameter λ
In this part, we show the influence of parameter λ, with λ = λw = λv ,
which controls the effects of group lasso. The experiments were
conducted on Yelp-50k and Amazon-50k, where only 50,000 ratings
are sampled and thus is a smaller version of Yelp-200K and Amazon-
200K for the sake of efficiency of parameter tuning. The RMSEs
of Yelp-50k and Amazon-50K are shown in Figures 4(a) and (b),
respectively. We can see that with λ increasing, RMSE decreases
first and then increases, demonstrating that λ values that are too large
or too small are not good for the performance of rating prediction.
Specifically, on Yelp, the best is λ = 0.05, and on Amazon, the best
is λ = 0.06. Next, we give further analysis of these two parameters
in terms of sparsity and the selected meta-graphs by group lasso.
Sparsity of w,V. We now study the sparsity of the learned
parameters, i.e., ratio of zeros in w,V after learning. Sparsity is
defined as sparsity = z

wn+vn , where z is the total number of zeros
in w and V, and wn and vn are the number of entries in w and V,
respectively. The larger sparsity is, the more zeros are in w and
V, which will reduce the time of online prediction. The trend of
sparsity with different λ’s is shown in Figure 4(c). We can see that
with λ increasing, the sparsity becomes greater, which aligns with
the effects of group lasso. Note that the trend is non-monotonous
due to the non-convexity of the objective function w.r.t. w and V
and the fact that we set λw = λv for the convenience of parameter
tuning.
The Selected Meta-graphs. In this part, we analyze the selected
features by group lasso. From Figure 4, we can see that w and V
are good in terms of RMSE and sparsity when λ = 0.05 on Yelp



Table 4: Selected Meta-graphs for Yelp and Amazon.

User-Part Item-Part
w V w V

Yelp
Important M1 −M4,M6,M8 M1 −M3,M5,M8 M1 −M5,M8,M9 M3,M8
Useless M5,M7,M9 M4,M6,M7,M9 M6,M7 M1,M2,M4 −M7,M9

Amazon
Important M1 −M3,M5 M1 −M6 M2,M3,M5,M6 M2,M5,M6
Useless M4,M6 - M1,M4 M1,M3,M4

and λ = 0.06 on Amazon. Thus, we show the most important meta-
graphs with this configuration for user and item latent features. The
results of Amazon and Yelp are shown in Table 4.

From Table 4, we can observe that both the first-order and second-
order interactions are important for overall performance, which
demonstrates that the second-order interactions are necessary for
better recommendation performance. As we mentioned in Section 1,
previous works do not fully make use of the latent features, like the
second-order interactions.

Another discovery is that the meta-graphs with style like U →
∗ ← U → B are better than those like U → B → ∗ ← B. Here we
useU → ∗ ← U → B to represent meta-graphs like M2,M3,M8,M9
in Figure 3(a) and M2,M5,M6 in Figure 3(b), while use U → B →
∗ ← B to represent meta-graphs like M4,M5,M6,M7 in Figure 3(a)
and M3,M4 in Figure 3(b). For Yelp, we can see that meta-graphs
like M2,M3,M8,M9 tend to be selected while M4 −M7 are removed,
which means that on Yelp, recommendations by friends or similar
users are better than those by similar items. Similar cases exist on
Amazon, i.e., M3,M4 tend to be removed.

Finally, on both datasets, complex structures likeM9 in Figure 3(a)
and M6 in Figure 3(b) are determined to be important for item latent
features, which demonstrates the importance of capturing these
kinds of relations, which are ignored by previous meta-path based
recommendation methods [29, 39, 40].

4.7 Recommending Performance with Single
Meta-Graph

In this part, we compare the performances of different meta-graphs
separately. In the training process, we use only one meta-graph
for user and item features and then predict and evalute the results
obtained by the corresponding meta-graph. Specifically, we run
experiments to compare RMSEs of all of the meta-graphs in Figure 3.
The RMSE of each meta-graph is shown in Figure 5. Note that we
show as comparison the RMSEs of all the meta-graphs used, denoted
by Mall .

From Figure 5, we can see that on both Yelp and Amazon, the
performances are the best when all meta-graph based user and item
features are used, which demonstrates the usefulness of the semantics
captured by the designed meta-graphs in Figure 3. Besides, we
can see that on Yelp, the performances of M4 − M7 are the worst,
and on Amazon, the performances of M3 −M4 are also among the
worst three. Note that they are both meta-graphs with style like
U → B → ∗ ← B. Thus, it aligns with the observation in Section 4.6
that meta-graphs with style like U → ∗ ← U → B are better than
those like U → B → ∗ ← B.

Finally, for M9 on Yelp and M6 on Amazon, we can see that
the performances of these two meta-graphs are among the best
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Figure 5: RMSE of single meta-graph on Yelp and Amazon.
Mall is our model trained with all meta-graphs.

three, which demonstrates the usefulness of the complex semantics
captured in M9 on Yelp and M6 on Amazon. In future work, we will
try to design more complex meta-graphs like these two, and study if
they can further improve recommending performance.

4.8 The Parameters F and K
In this part, we study the influence of the two parameters: F and K .
F is the rank used to factorize meta-graph based user-item similarity
matrices to obtain user and item latent features (see Section 2.2).
K is the number of factors to factorize the second-order weights
V in the FMG model (see Section 2.3). For the sake of efficiency,
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Figure 6: (a) and (b) show RMSEs with different K’s and F ’s, (c) shows the execution time with different sizes of datasets.

we conduct extensive experiments using the smaller datasets, Yelp-
50K and Amazon-50K. We set F and K to values in the range of
[2, 3, 5, 10, 20, 30, 40, 50, 100]. The results are shown in Figures 6(a)
and (b). We can see that the performances get better with larger F or
K in both datasets. After a threshold value, i.e., 10, the performance
becomes stable. In practice, the performance gains are marginal
when the two parameters are greater than 10, and larger values mean
higher computational cost. Therefore, it is enough to obtain a good
performance to set F = 10 and K = 10 for these two datasets, which
are the adopted settings of these two parameters of the experimental
results reported in Section 4.5.

4.9 Scalability
In this part, we study the scalability of our FMG model. We extract
a series of datasets of different scales from Yelp-200K and Amazon-
200K according to the number of observations in the user-item
rating matrix. The specific values are [5K , 10K , 50K , 100K , 200K].
The time cost of Amazon and Yelp datasets are shown in Figure 6(c),
for which we set λ = 0.05 for Yelp and λ = 0.06 for Amazon and
number of iterations to 3, 000. We can see from the figure that the
training time is almost linear to the number observed ratings.

5 RELATED WORK
In this section, we briefly introduce the related work of HINs and
recommendation.

5.1 Heterogeneous Information Networks
HINs have been proposed as a general representation for many
real-world graphs or networks. Meta-path has been developed as a
sequence of entity types defined by the HIN network schema. Based
on a meta-path, several similarity measures, such as PathCount [32],
PathSim [32], and Path Constrained Random Walk (PCRW) [16]
have been proposed. These measures have been shown to be useful
for entity search and similarity measure in many real networks.
After the development of meta-path, many data mining tasks have
been enabled or enhanced including recommendation [29, 39, 40],
similarity search [27, 28, 32], clustering [33, 35], classification [1,
12, 18], and link prediction [31, 43]. Recently, meta-graph (or meta-
structure) has been proposed to define more complicated semantics
in HIN [6, 10]. They still applied meta-graph to entity similarity

problem where entities are constrained to be of the same type. In this
paper, we extend this idea to recommendation problem. The problem
of recommendation requires us to approximate the large-scale user-
item rating matrix. Thus, instead of computing each similarity
efficiently online, we consider to compute the matrices offline, and
design the best way to use the user-item matrices generated by
different meta-graphs for the final prediction.

5.2 Recommendation in HIN
Modern e-commerce websites allow us to incorporate heterogeneous
information in making recommendations. Traditional recommenda-
tion systrems must be enhanced to make use of the rich semantics
provided by the heterogeneous information. For example, Ma et
al. [20] incorporated social relations as regularization sterm into
the matrix factorization in recommendation systems. In [4, 34],
items’ meta-data are modeled to improve the recommendation
task. In [19, 21], the review texts are analyzed together with the
ratings in the rating prediction task. Ye et al. [38] proposed a
probabilistic model to incorporate users’ preferences, social network
and geographical information to enhance the point-of-interests
recommendation. These previous approaches have demonstrated
the importance and effectiveness of heterogeneous information
in improving recommendation accuracy. However, most of
these approaches dealt with different heterogeneous information
disparately, hence losing important information that exist across
them.

HIN-based recommendation has been proposed to avoid the
disparate treatment of different types of information. Based on meta-
path, several approaches have attempted to tackle the recommen-
dation task based on HIN. In [39], meta-path based similarities are
used as regularization terms in the matrix factorization framework.
In [40], multiple meta-paths are used to learn user and item
latent features, which are then used to recover similarity matrices
combined by a weighted mechanism. In [29], users’ ratings to
items are used to build a weighted HIN, based on which meta-
path based methods are used to measure the similarities of users
for recommendation. The combination of different meta-paths are
explicit, using the similarities instead of latent features. As discussed
in the introduction, all of the above approaches do not make full use
of the meta-path based features, whereas our approach based on the
factorization machine can do.



5.3 Factorization Machine
Factorization Machine [25] is a state-of-the-art recommendation
framework, which can model the interactions among features,
e.g., the rating information, categories of items, texts, time, etc.
Therefore, it is a powerful framework to integrate content features
for collaborative-filtering-based recommendation. Many approaches
and systems have been developed based on FMs [9, 11, 26].
Different from previous approaches which only consider explicit
features, we generate latent features by matrix factorization based
on different meta-graphs. For FM using the original explicit
features, MF can be regarded as a step similar to PCA to perform
dimensionality reduction to reduce the noise of the original features.

6 CONCLUSION
In this paper, we present a heterogeneous information network (HIN)
based recommendation method. We introduce a principled way
of fusing heterogeneous information in the network. By using
meta-graphs derived from the HIN schema, we can formulate
complicated semantics between users and items. Then, we use
matrix factorization to obtain latent features of user and item from
each meta-path in an unsupervised way. After that, we use a group
lasso regularized factorization machine to fuse different groups of
semantic information extracted from different meta-graphs to predict
the links. Experimental results demonstrate the effectiveness of our
approach. In the future, we plan to explore richer information to
enrich the features and semantics in the network, and use parallel
computing and deep learning to further improve our system.
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