1 Theorems and Proofs

We will test theorem statements and proofs. The following is a list of sample items.
Separating hyperplane theorem
First-order condition of convex function
Second-order condition of convex function
Convexity of Pointwise maximization of a set of convex functions
Convexity of minimization of a convex function $f(x,y)$ with respect to a subset of variables y in a convex set C
Concavity of the Lagrange dual function
KKT optimality conditions

Here are a few sample problems.

Problem State and prove the separating hyperplane theorem

Problem Show that conjugate function $f^*(y)$ can be used to identify a supporting hyperplane of the epigraph of the original function $f(x)$.

Problem Show that the dual function yields lower bounds on the optimal value p^* of the primal problem, i.e. for any Lagrange multipliers $\lambda \geq 0$ and any ν, we have the dual function,

$$g(\lambda, \nu) \leq p^*.$$ \hspace{1cm} (1)

2 Case Studies

We go through a few cases to clarify the concept.

Problem Supporting Hyperplane: Given a set $\{x \mid x_1^2 + 2x_2^2 \leq 9\}$, find a supporting hyperplane at point $[x_1, x_2] = [1, 2]$.

Problem Dual Cone: Given a cone $K = \{\theta_1 u_1 + \theta_2 u_2 \mid u_1 = [1, 1]^T, u_2 = [0, 1]^T, \theta_1 + \theta_2 = 1, \theta_1 \geq 0, \theta_2 \geq 0\}$, find the dual cone of K.

Problem Conjugate Function: Given a function $f(x) = x_1 x_2, x \in \mathbb{R}^2$, find the dual function $f(y)^*, y \in \mathbb{R}^2$.

Problem Primal Dual Formulation: Given a linear programming problem,

minimize $f_0(x) = c^T x$

subject to $Ax \leq b$, and $Cx = d$, where $x \in \mathbb{R}^n$.

Derive the dual problem formulation.

3 Problems from Exercises and Other Sources

We may use problems from exercises and other sources. Here are some samples.

Problem exercise 3.13

Problem exercise 4.8