
CSE 20

DISCRETE MATH

Fall 2017

http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

New HW

deadline:

Saturday

11pm

http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

Today's learning goals
• Prove propositional equivalences using truth tables

• Prove propositional equivalences using other known

equivalences, e.g.

• DeMorgan’s laws

• Double negation laws

• Distributive laws, etc.

• Compute the CNF and DNF of a given compound

proposition.

(Some) Useful equivalences Rosen p. 26-28

Can replace p and q with any (compound) proposition

…. 32 equivalences listed in book!

(Some) Useful equivalences Rosen p. 26-28

…. 32 equivalences listed in book!

For constructing (minimal) circuits with specified gates

• only NOTs?

• only ANDs?

(Some) Useful equivalences Rosen p. 26-28

…. 32 equivalences listed in book!

For simplying and evaluating complicated compound propositions

• Remove parentheses?

• Reduce subexpressions to simpler ones

(Some) Useful equivalences Rosen p. 26-28

…. 32 equivalences listed in book!

For devising proofs of statements

• Translate using existing logical structure.

• Try to apply known proof strategy.

• Rewrite in equivalent way to apply additional proof strategies.

(more on this later)

Sample equivalence proof
Prove that is logically equivalent to

Are these compound propositions logically equivalent to ?

Other laws of equivalence Rosen p. 29-31

Any compound proposition can be translated to one using …

A. only ANDs.

B. only ORs.

C. only IFs.

D. only NOTs.

E. None of the above

Other laws of equivalence Rosen p. 35 #42-53

Any compound proposition can be translated to one using …

A. only ANDs.

B. only ORs.

C. only IFs.

D. only NOTs.

E. None of the above

Functionally complete

collection of

connectives.

Functionally complete set of connectives Rosen p. 35 #42-53

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically

equivalent one that only has the operators AND, NOT

Functionally complete set of connectives Rosen p. 35 #42-53

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically

equivalent one that only has the operators AND, NOT

Example:

Circuits?

Functionally complete set of connectives Rosen p. 35 #42-53

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically

equivalent one that only has the operators AND, NOT

Example:

Circuits?

Functionally complete set of connectives Rosen p. 35 #42-53

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically

equivalent one that only has the operators AND, NOT

Example:

Circuit?

Functionally complete set of connectives Rosen p. 35 #42-53

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically

equivalent one that only has the operators AND, NOT

Example:

Circuit?

Functionally complete set of connectives Rosen p. 35 #42-53

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically

equivalent one that only has the operators AND, NOT

Example:

Rewriting compound propositions using only NOT, AND

1. Work from the inside out …

2. For each connective, replace it with an equivalent form

that uses only NOT, AND:

• If the connective is NOT or AND, do nothing.

• If the connective is OR: replace with …

• If the connective is IF..THEN: replace with …

• If the connective is IFF: replace with …

• If the connective is XOR: replace with …

Functionally complete set of connectives Rosen p. 35 #42-53

Example: express as a logically equivalent

compound proposition that only uses ANDs and NOTs.

Functionally complete set of connectives Rosen p. 35 #42-53

Example: express as a logically equivalent

compound proposition that only uses ANDs and NOTs.

Use to rewrite intermediate step:

Functionally complete set of connectives Rosen p. 35 #42-53

Example: express as a logically equivalent

compound proposition that only uses ANDs and NOTs.

Use to rewrite intermediate step:

Use to rewrite:

Simplify double negation and use associativity:

Functionally complete set of connectives Rosen p. 35 #42-53

Going backwards
Given compound proposition, use

• Truth tables

• Logical equivalences

to compute truth values.

Reverse?

Given truth table settings, want compound proposition with

that output. E.g. Think back to HW2 Q2

Conjunctive normal form: AND of ORs (of variables or their negations).

Disjunctive normal form: OR of ANDs (of variables or their negations).

CNF and DNF Rosen p. 35 #42-53

Which of the following is in CNF?

A.

B.

C.

D.

E. More than one of the above.

Edge case: A

can be interpreted

as an

• AND (of itself),

and as an

• OR (of itself)

Reverse-engineering
p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Reverse-engineering
p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Approach 1:

classify rows

based on one

variable

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

DNF: when is

output T?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

LAND IN THESE ROWS!

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

DNF: when is

output T?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

DNF: when is

output T?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

DNF: when is

output T?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

DNF: when is

output T?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

CNF: when is

output F?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

AVOID THESE ROWS!

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

CNF: when is

output F?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

AVOID THESE ROWS!

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

CNF: when is

output F?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Reverse-engineering
Approach 2:

algorithmically

convert to

normal form

CNF: when is

output F?

p q r ?

T T T T

T T F T

T F T F

T F F T

F T T F

F T F F

F F T T

F F F F

Payoff
• Any output column of a truth table (assignment of T/F to

each combination of T/F input values) can be realized as

a compound proposition.

• The collection is functionally complete.

Normal forms Rosen p. 35 #42-53

Compound

proposition
Proposition in

normal form

Added benefit: If want to reduce connectives further to prove a new collection

of connectives is functionally complete, only need to consider those used in

normal form.

