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Today's learning goals

Prove propositional equivalences using truth tables

Prove propositional equivalences using other known
equivalences, e.qg.

DeMorgan’s laws

Double negation laws

Distributive laws, etc.

Compute the CNF and DNF of a given compound
proposition.
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Can replace p and q with any (compound) proposition
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For constructing (minimal) circuits with specified gates

 only NOTs?
« only ANDs?

pAT =p pVF=p
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For simplying and evaluating complicated compound propositions

« Remove parentheses?
 Reduce subexpressions to simpler ones

.... 32 equivalences listed in book!
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For devising proofs of statements
« Translate using existing logical structure.

« Try to apply known proof strategy.
* Rewrite in equivalent way to apply additional proof strategies.

(more on this later)
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Any compound proposition can be translated to one using ...

A. only ANDs.

B. only ORs.

C. only IFs.
only NOTs.

@None of the above
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Any compound proposition can be translated to one using ...
Q
A. only ANDs. Q
B. only ORs. @
C. only IFs. _
D. only NOTs. Functionally complete
E. None of the above collection of
OJ/T’V‘ 7 connectives.
N =




Functionally complete set of connectives rosen p. #4253

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically
equivalent one that only has the operators AND, NOT



Functionally complete set of connectives rosen p.ss 253

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically
equivalent one that only has the operators AND, NOT

Example: pA(gA-r)

Circuits?



Functionally complete set of connectives rosen p.ss 253

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically
equivalent one that only has the operators AND, NOT

Example: pVg L (7 < ?VZ}:%? : j1>
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Circuits?
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Functionally complete set of connectives rosen p.ss 253

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically
equivalent one that only has the operators AND, NOT

Example: p—q¢ — —17; 1 =1 (/D/\ 7z>

Circuit?



Functionally complete set of connectives rosen p.ss 253

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically
equivalent one that only has the operators AND, NOT

Example: p<+rq

Circuit?



Functionally complete set of connectives rosen p.ss 253

Claim: The connectives AND, NOT are functionally complete.

Any compound proposition can be rewritten as a logically
equivalent one that only has the operators AND, NOT

Example: pDq



Functionally complete set of connectives rosen p.3s 253

Rewriting compound propositions using only NOT, AND
Work from the inside out ...

For each connective, replace it with an equivalent form

that uses only NOT, AND:

If the connective is NOT or AND, do nothing.

If the connective is OR: replace pVgq Wip A —q)

If the connective is IF.THEN: replace p = ¢ with ... —(p A —q)

If the connective is IFF: replace p <> g with ...~(p A —=g) A=(=pAq)

If the connective is XOR: replace »® ¢ with ... 7(=(P A =¢) A =(-p A gq))



Functionally complete set of connectives rosen p. #4253

Example: express A— (BvC) as alogically equivalent
compound proposition that only uses ANDs and NOTSs.



Functionally complete set of connectives rosen p.ss 253

Example: express A — (BvC) as alogically equivalent
compound proposition that only uses ANDs and NOTSs.

Use pVg=-(-pA—q) torewrite intermediate step:

A = —~(~B A -C)



Functionally complete set of connectives rosen p.3s 253

Example: express A— (Bv(C) as alogically equivalent
compound proposition that only uses ANDs and NOTSs.

Use pVg=-(-pA—q) torewrite intermediate step:
A— ~(-BA-C)

Use p—q=-(pA—g) torewrite:

~(AA=(=(EBAR0))
Simplify double negation and use associativity: ~(AA-B A —C)
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Going backwards

Given compound proposition, use
- Truth tables
- Logical equivalences

to compute truth values.

Reverse?

Given truth table settings, want compound proposition with
that output. E.g. Think back to HW2 Q2



CNF and DNF

Rosen p. 35#42-53

Conjunctive normal form: AND of ORs (of variables or their negations).

Disjunctive normal form: OR of ANDs (of variables or their negations).

/\/\

Which of the following is in CNF?

jPVQ> CN , DNTF
~(pVq)
EV& (P‘v’ﬁg)
-(pﬂq} pA-q) PNF

E. More than one of the above.

Edge case: A ‘
can be interpreted )
as an
* AND (of itself),
and as an
* OR (of itself)
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Reverse-engineering
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Reverse-engineering
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Approach 1: r ?
classify rows T T T T
based on one ( \ )
variable L) i 5 B p /\ r q
T F T F
T F F T
T T F
T F F
F T T PAN—qQAT
F F F
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Reverse-engineering

Approach 2:
algorithmically
convert to
normal form
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T 474747

T 4 717174

n B B R s I R R

T T4 4 7T A
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Reverse-engineering
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Approach 2: r
algorithmically T T T T w
convert to - T B T ™~
normal form S~
T F T F LAND IN THESE ROWS!
DNF: when is T F F T S
2
output T - - - -
F T F F
F F T T
S~
F F F F
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Reverse-engineering

Approach 2:
algorithmically , T T =
convert to . - B T Y\\
normal form N
T F T F
DNF: when is T F F T S
output T? - - T c
F T F F
[F 7 7] 7.l
F F F F
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Reverse-engineering
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Approach 2: T
algorithmically T T T T f f f B
convert to — ~ PAGAT )
T T F T w ¢
normal form — ~ PAgq !\@
T F T F -
DNF: when is T F F T S pA—qA-r
?
output T - - - -
F T F F
i F F T | T w
‘ ~~ — —
F F F F PATGAT




Reverse-engineering

Approach 2:
algorithmicall
cognvertto ’ . ! U s PAGAT
T T F T
normal form S~ pANgN-—r
T F T F
(E)DllJ\ItF:uwgn is T F F T S pA—gA-r
put 1 F T T F
F T F F
F F T T
\ - 1
o~ N__E _F F F PATGAT
(PAGAT)V (PAGA-T)V (pA~gA-T)V (-pA-gAr) DN
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Reverse-engineering

Approach 2:
algorithmically , T T =
convert to . - B T Y\\
normal form N
T F T F
DNF: when is T F F T S
output T? - - T c
F T F F
[F 7 7] 7.l
F F F F
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Reverse-engineering

Approach 2
algorithmically T T T T
convert to _
normal form —1 i F_ ~ T Pm’f 2 not &=
| T F T ) F w_ Vv r oot
_ . — ~~ AVOID THESE ROWS!
CNF: when is T F F T
output F?
F T T F =~
- T F F s
F F T T
F F F F =
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Reverse-engineering

Approach 2
algorithmically T T T T
convert to - - - -~
normal form
T F T F <
_ . ~ AVOID THESE ROWS!
CNF: when is T F F T
output F?
F T T F S~
F T F F AN
F F T T (op A g A 1)
=/ — - =] =
F F F Fw, 004

~ pVgqVr
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Reverse-engineering

Approach 2:
algorithmically T T T T
convert to - — - -~
normal form
T F T F
: N
CNF: when is T F = T pVaqVor
?
output F~ - - - F s y y
F T F F v . vﬁqvﬁr
- T
- - T T pvV ™4
F F F F s

~ pVgVr




Reverse-engineering

Approach 2: @
algorithmically T T T
convert to - - - -~
normal form
T F T F
CNF: when is T F F T pVaqVor
?
output F~ . T N F v
pV gV r
F T F F N
pV-gVr
F F T T
F F F F
™~ pVvgVr

(_‘quV_'T@)Vﬁq\fﬁ?"@\ypvﬂqV@(quvr) C’\)F_



Payoff

Any output column of a truth table (assignment of T/F to
each combination of T/F input values) can be realized as
a compound proposition.

The collection V A -~ Is functionally complete.



Normal forms - Rosen p. 35#42-53

, Proposition in
normal form

Compound
proposition

Added benefit: If want to reduce connectives further to prove a new collection
of connectives is functionally complete, only need to consider those used in
normal form.



