There are 10 types of people in the

CSE 20

 DISCRETE MATHFall 2017
http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

Today's learning goals

- Define the decimal, binary, hexadecimal, and octal expansions of a positive integer.
- Convert between expansions in different bases of a positive integer.
- Define and use the DIV and MOD operators.
- Describe and use algorithms for integer operations based on their expansions.

About you

CENTR 105: AB

To change your remote frequency

1. Press and hold power button until flashing
2. Enter two-letter code
3. Checkmark / green light indicates success

How many people in this class have you met so far?
A. None.
B. Less than 5 .
C. 5-10.
D. 10-15.
E. More than 15 .

Algorithms!

From last time
An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.
... arithmetic
... optimization

Representation

$$
\log _{2}(32)
$$

101

Integer representations

Different contexts call for different representations.

Base 10

Base 2

Bases and algorithms

$$
142 \times 17
$$

Powers of 10

$$
\begin{aligned}
142 & =1 \times 10^{2}+4 \times 10^{1}+2 \times 10^{0} \text { Exponent } \\
17 & =1 \times 10^{1}+7 \times 10^{0} \text { Base non ne gative }
\end{aligned}
$$

If n is a positive integer and we express its usual decimal expansion as sums of multiples of power of 10, then

The exponents of powers of 10 in the sum are all positive.
B. There is a largest exponent in the sum.
C. The coefficient of each power of 10 is nonnegative and less than 10
D. More than one of the above.
E. All of the above.

$$
2017
$$

$$
=
$$

$$
\begin{aligned}
& 2 \cdot 10^{3}+0 \cdot 10^{2}+ \\
& 1 \cdot 10^{1}+7 \cdot 10^{0^{*}}
\end{aligned}
$$

Powers of b

- k, a nonnegative integer
- $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{k-1}$ integers between 0 and $b-1$, where
- $a_{k-1} \neq 0$ and

$$
n=\widetilde{a_{k-1} b^{k-1}}+\ldots+\widetilde{a_{1} b}+\widetilde{a_{0} b}
$$

Base expansion

Notation: for positive integer n

Write
when

$$
n=\left(a_{k-1} \ldots a_{1} a_{0}\right)_{b}
$$

$$
n=a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}
$$

Base b expansion of n

17

$$
\begin{aligned}
& (17)_{10}=(100001)_{2} \quad(k=5) \\
& \begin{array}{ll}
=\left(\begin{array}{cc}
\text { eight ones } \\
2 & 1
\end{array}\right)_{8} & (k=2) \\
=(11)_{16} & (k=2) \\
=b-1
\end{array}
\end{aligned}
$$

chef

Hexadecimal coefficients

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- A value 10
- B value 11
- C

12
13

- E

14

- F

Base expansion

In what base could this expansion be
(1401)?
A. Binary (base 2)
B. Octal (base 8)
C. Decimal (base 10)
D. Hexadecimal (base 16)
E. More than one of the above

Base expansion

In what base could this expansion be
(1401)?
A. Binary (base 2)
B. Octal (base 8)
C. Decimal (base 10)
D. Hexadecimal (base 16)

Value: $1^{*} 8^{3}+4^{*} 8^{2}+1=768$
Value: $1^{*} 10^{3}+4^{*} 10^{2}+1=1401$
Value: $1^{*} 16^{3}+4^{*} 16^{2}+1=5121$
E. More than one of the above

Arithmetic

Algorithm: constructing base b expansion fposnts length of rep'n

 Input n, b_{n} Output k, coefficients in expansion- English description.
- Pseudocode.

Algorithm: constructing base b expansion

Input n,b Output k, coefficients in expansion

- English description.

Find k
Work down to find a_{k-1}, then a_{k-2}, etc.

Algorithm: constructing base b expansion

Input n,b Output k, coefficients in expansion

- English description.

Find k
Work down to find a_{k-1}, then a_{k-2}, etc.

What's the length of the base b expansion of n ?
rephrase as:
What's the smallest power of b that is bigger than n ?

Algorithm: constructing base b expansion

Input n, b
Output k, coefficients in expansion
English description:
Find k by computing successive powers of b until find smallest k such that

$$
b^{k-1} \leq n<b^{k}
$$

Initialize value remaining $v:=n$
What's the the base 3 expansion of 17 ?
Set a_{k-i} to be the largest number between
0 and $b-1$ for which $a_{k-i} b^{k-i} \sum v_{.9}+1.3+C=$
Update $v:=v-a_{k-i} b^{k-i}$

$$
1 \cdot 9+1.3+1=\begin{aligned}
& \text { D. }(111)_{3} \\
& \text { D. } 222)_{3}
\end{aligned}
$$

E. None of the above.

Algorithm: constructing base b expansion

Input n,b
Output k, coefficients in expansion
English description:
Find k by computing successive powers of b until find smallest k such that

$$
b^{k-1} \leq n<b^{k}
$$

Initialize value remaining $v:=n$
For each value of i from 1 to k
Set a_{k-i} to be the largest number between
0 and $b-1$ for which $a_{k-i} b^{k-i} \leq v$.
Update $v:=v-a_{k-i} b^{k-i}$

Algorithm: constructing base b expansion Rosen p. 249

Input n,b Output k, coefficients in expansion

Idea: Find smallest digit first, then next smallest, etc. but how?

Reminder: Divisibility

Theorem: For n an integer and d a positive integer, there are unique integers q and r with $0 \leq r<d$ and $n=q d+r$.
Notation: $\mathrm{q}=\mathrm{n}$ div $\mathrm{d} \quad \mathrm{r}=\mathrm{n} \bmod \mathrm{d}$

Quotient when
divide n by b

Remainder
when divide n by b

What is 24 div 5 ? What is $15 \bmod 5$?
(A) 4,0
B. 3,0
C. 4,3
D. 3,3
E. I don't know.

Bases and Divisibility

When $\mathrm{k}>1$

$$
n=a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}
$$

Bases and Divisibility

When $\mathrm{k}>1$

Bases and Divisibility

Useful fact:
if $n=\left(a_{k-1} \ldots a_{0}\right)_{b}$ then $b n=\left(a_{k-1} \ldots a_{0} 0\right)_{b}$

Why?

How is this useful?

Algorithm: constructing base b expansion Rosen p. 249

Input n,b Output k, coefficients in expansion

Idea: Use n mod b to compute least significant digit.
Use n div b to compute new integer whose expansion we need. Repeat.

Algorithm: constructing base b expansion fosen p. 249

Input n,b Output k, coefficients in expansion
Pseudocode:
procedure base b expansion ($n, b:$ pos ints with $b>1$)

1. $q:=n$
2. $k:=0$
3. while $q \neq 0$
4. $a_{k}:=q \bmod b$
5. $\quad q:=q \operatorname{div} b$
6. $k:=k+1$
7. return $\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)$

Algorithm: constructing base b expansion fosen p. 249

procedure base bexpansion (n, b : pos ints with $b>1$)

1. $q:=n$
2. $k:=0$
3. while $q \neq 0$
4. $\quad a_{k}:=q \bmod b$
5. $\quad q:=q \operatorname{div} b$
6. $k:=k+1$

n	b	q	k	a_{k}
17	3	17	0	$17 \bmod 3=2$
		$17 \operatorname{div} 3=5$	1	$5 \bmod 3=2$
		$5 \operatorname{div} 3=1$	2	$1 \bmod 3=1$
		$1 \operatorname{div} 3=0$	3	return!

7. return $\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)$

Terminology

- Base b expansion:
- Coefficients between 0 and b-1 (inclusive)
- Leading coefficient nonzero
- Fixed-width base b expansion:
- Coefficients between 0 and b-1 (inclusive)
- Pad leading coefficients as 0 to match desired width

Representing more?

- Base b expansions can express any positive integers
- Fixed width base bexpasions can express nonnegative integers [0, $b^{k}-1$]
- What about
- negative integers?
- rational numbers?
- other real numbers?

Reminders

- Homework 1 due Friday at 11 pm
- Pseudocode and algorithms + number representations
- Office hours available
- Group
- One-on-one

There are 10 types of people in the world: those who understand ternary, those who don't, and those who mistake it for binary

