

Fall 2017

http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

Today's learning goals

- Define the decimal, binary, hexadecimal, and octal expansions of a positive integer.
- Convert between expansions in different bases of a positive integer.
- Define and use the DIV and MOD operators.
- Describe and use algorithms for integer operations based on their expansions.

About you

CENTR 105: AB

CENTR 115: BA

To change your remote frequency

- 1. Press and hold power button until flashing
- 2. Enter two-letter code
- 3. Checkmark / green light indicates success

How many people in this class have you met so far?

- A. None.
- B. Less than 5.
- C. 5-10.
- D. 10-15.
- E. More than 15.

Algorithms!

From last time

An **algorithm** is a finite sequence of precise instructions for performing a computation or for solving a problem.

... arithmetic ... optimization

Representation

51

Integer representations

Different contexts call for different representations.

Base 2

Base 10

Bases and algorithms

- k, a nonnegative integer
- a_0 , a_1 , a_2 , a_3 , ..., a_{k-1} integers between 0 and b-1, where
- a_{k-1}≠0 and

$$n = a_{k-1}b^{k-1} + \dots + a_1b + a_0b^{-1}$$

Base b expansion of n

Hexadecimal coefficients

- 0
- 1
- 2
- 3
- 4
- 5
- 6

• 7

- 8 • 9 value 10 • A • B value 1/ • C 12 13 1 /u • E (15 (• F

Base expansion

In what base **could** this expansion be $(1401)_2$

- A. Binary (base 2)
- B. Octal (base 8)
- C. Decimal (base 10)
- D. Hexadecimal (base 16)
- E. More than one of the above

In what base **could** this expansion be $(1401)_2$

- A. Binary (base 2)
- B. Octal (base 8)
- C. Decimal (base 10)
- D. Hexadecimal (base 16)
- E. More than one of the above

Value: 1*8³+4*8²+1=768 Value: 1*10³+4*10²+1=1401 Value: 1*16³+4*16²+1=5121

Algorithm: constructing base b expansion Input n,b Output k, coefficients in expansion • English description.

Pseudocode.

- Input n,b Output k, coefficients in expansion
- English description.

Find k

Work down to find a_{k-1} , then a_{k-2} , etc.

- Input n,b Output k, coefficients in expansion
- English description.

Find k

Work down to find a_{k-1} , then a_{k-2} , etc.

What's the length of the base b expansion of n? rephrase as: What's the smallest power of b that is bigger than n?

Input n,b Output k, coefficients in expansion

English description:

Find k by computing successive powers of b until find smallest k such that

 $b^{k-1} < n < b^{k}$ What's the the Initialize value remaining v := nbase 3 expansion of 17? For each value of i from 1 to k Set a_{k-i} to be the largest number between 0 and b-1 for which $a_{k-i} b^{k-i} \leq v_{n-1} | \cdot 3 + 0 = 1$ A. (10001)₃ **B**. (210)₃ $| \cdot q + | \cdot 3 + | = (111)_3$ D. (222)_3 Update $v := v - a_{k-i} b^{k-i}$ E. None of the above.

Input n,b Output k, coefficients in expansion

English description:

Find k by computing successive powers of b until find smallest k such that

 $b^{k-1} \le n \le b^k$

Initialize value remaining v := n

For each value of i from 1 to k

Set a_{k-i} to be the largest number between 0 and b-1 for which $a_{k-i} b^{k-i} \le v$. Update $v := v - a_{k-i} b^{k-i}$

Definite? Finite? Correct?

Challenge: translate to pseudocode!

Algorithm: constructing base b expansion Rosen p. 249 Input n,b Output k, coefficients in expansion

Idea: Find smallest digit first, then next smallest, etc. **but how?**

Reminder: Divisibility

Theorem: For n an integer and d a positive integer, there are unique integers q and r with $0 \le r < d$ and n = qd + r. r = n **mod** d **Notation:** $q = n \operatorname{div} d$ Quotient when Remainder when divide n divide n by b by b What is 24 **div** 5? What is 15 **mo**d 5? B. 3, 0 D. 3, 3 I don't know.

Bases and Divisibility

Rosen p. 237-239

When k>1

$$n = a_{k-1}b^{k-1} + \dots + a_1b + a_0$$

Bases and Divisibility

Rosen p. 237-239

When k>1

Bases and Divisibility

Rosen p. 237-239

Useful fact:

if
$$n = (a_{k-1}...a_0)_b$$
 then $bn = (a_{k-1}...a_00)_b$

Why?

How is this useful?

Algorithm: constructing base b expansion Rosen p. 249 Input n,b Output k, coefficients in expansion

Idea: Use n **mod** b to compute least significant digit. Use n **div** b to compute new integer whose expansion we need. Repeat.

Algorithm: constructing base b expansion Rosen p. 249

Input n,b Output k, coefficients in expansion *Pseudocode:*

procedure base b expansion(n, b: pos ints with <math>b > 1)

1. q := n2. k := 03. while $q \neq 0$ 4. $a_k := q \mod b$ 5. $q := q \operatorname{div} b$ 6. k := k + 17. return $(a_{k-1}, \dots, a_1, a_0)$

Algorithm: constructing base b expansion Rosen p. 249 procedure base b expansion(n, b: pos ints with b > 1)

1. q := n2. k := 03. while $q \neq 0$ 4. $a_k := q \mod b$ 5. $q := q \dim b$ 6. k := k + 1

7. return $(a_{k-1}, \ldots, a_1, a_0)$

n	b	q	k	a _k
17	3	17	0	17 mod 3 = 2
		17 div 3 = 5	1	5 mod 3 = 2
		5 div 3 = 1	2	1 mod 3 = 1
		1 div 3 = 0	3	return!

Definite? Finite? Correct?

Terminology

- Base b expansion:
 - Coefficients between 0 and b-1 (inclusive)
 - Leading coefficient nonzero

• Fixed-width base b expansion:

- Coefficients between 0 and b-1 (inclusive)
- Pad leading coefficients as 0 to match desired width

Representing more?

- Base b expansions can express any **positive integers**
- Fixed width base b expasions can express nonnegative integers [0, b^k-1]

- What about
 - negative integers?
 - rational numbers?
 - other real numbers?

stay tuned for CSE 30, CSE 140

Reminders

- Homework 1 due Friday at 11pm
 - Pseudocode and algorithms + number representations
- Office hours available
 - Group
 - One-on-one

There are 10 types of people in the world: those who understand ternary, those who don't, and those who mistake it for binary

(Ternary means base 3)