CSE 20
DISCRETE MATH

Fall 2017

http://cseweb.ucsd.edu/classes/fa17/cse20-ab/
Today's learning goals

• Determine whether a relation is an equivalence relation by determining whether it is
 • Reflexive
 • Symmetric
 • Transitive
• Represent equivalence relations as partitions and vice versa
• Define and use the congruence modulo m equivalence relation
Cardinality recap

Finite

{0,1} {a,b}

{1} { Empty set }

{a}

Empty set

Countably infinite

{0,1}*

N Z

Q

Z+ \times Z+

Uncountable

P(P((N))

R (0,1)

\mathbb{P}(\mathbb{N})
Binary relations

\[R = A \times B \]

Function \(\xi : A \to B \) where \(a \in A \)

Only have one pair \(\langle a, f(a) \rangle \) in each domain element

Student Last Name	**Major**
Ackermann | Math-CS
Guo | Cog Sci
Kumar | CS
Yau | Economics
Yau | CS

P({a,b})	**P({a,b})**
empty set | empty set
\{a\} | \{a\}
\{a\} | \{b\}
\{b\} | \{a\}
\{b\} | \{b\}
\{a,b\} | \{a,b\}

\((1, 2, 4, 8)\)

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

\(\emptyset\), \(\{a\}\), \(\{b\}\), \(\{a,b\}\)

\(1, 2, 4, 8\)

\(\{1, 2, 4, 8\}\)
Let A be a set.

Binary relation on A is (any) subset of $A \times A$.

How to visualize / represent?
Let A be a set.

Binary relation on A is (any) subset of $A \times A$.

Examples

$A = \mathbb{Z}$

$R_1 = \{(x,y) \mid x < y\}$

$1 R_1 2$ \quad \text{i.e.} \quad (1,2) \in R_1$

not$(2 R_1 1)$ \quad i.e. \quad (2,1) \not\in R_1$
Relations, more generally

Let A be a set.

Binary relation on A **is (any) subset of** $A \times A$.

Examples

$A = \{0,1\}^*$

$R_2 = \{(w, u) \mid l(w) = l(u)\}$

10 R_2 00

not(0 R_2 10)
Relations, more generally \textit{Rosen Sections 9.1, 9.3 (second half), 9.5}

Let A be a set.

Binary relation on A **is** (any) subset of $A \times A$.

\textbf{Examples}

$A = \{0,1,2\}$

$R_3 = \{(0,0), (0,2), (2,0)\}$ \quad 0 R_3 2 \quad not (0 R_3 1)
Equivalence relations

Group together "similar" objects

Rosen p. 608
Equivalence relations

Partition A into equivalence classes, each of which consists of "similar" elements: collection of disjoint, nonempty subsets that have A as their union.

\(x, y \) both in \(A_i \) iff \(x \) and \(y \) are "similar"
Relation on a set A

A relation R is called

reflexive iff $\forall a\ (a, a) \in R$

symmetric iff $\forall a \forall b\ (a, b) \in R \rightarrow (b, a) \in R$

transitive iff $\forall a \forall b \forall c\ ([a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R$

\[\frac{3}{2} = \frac{12}{4} \quad \text{conclude} \quad 3 = \frac{12}{4} \]
A relation R is called **reflexive** iff $\forall a\ ((a, a) \in R)$

$R_1 = \{(x,y) \mid x < y\}$ on $A = \mathbb{Z}$
$R_2 = \{(w, u) \mid l(w) = l(u)\}$ on $A = \{0,1\}^*$
$R_3 = \{(0,0), (0,2), (2,0)\}$ on $A = \{0,1,2\}$

Which of these relations is reflexive?

A. All of them
B. Just R_1
C. R_2 and R_3
D. Some other combination
A relation R is called \textbf{symmetric} iff \(\forall a \forall b ((a, b) \in R \rightarrow (b, a) \in R) \)

- $R_1 = \{(x, y) \mid x < y\}$ on $A = \mathbb{Z}$
- $R_2 = \{(w, u) \mid l(w) = l(u)\}$ on $A = \{0,1\}^*$
- $R_3 = \{(0,0), (0,2), (2,0)\}$ on $A = \{0,1,2\}$

Which of these relations is symmetric?
- A. All of them
- B. Just R_1
- C. R_2 and R_3
- D. Some other combination
Relation on a set A

A relation R is called **transitive** iff

\[
\forall a \forall b \forall c \left((a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R \right)
\]

- $R_1 = \{(x, y) \mid x < y\}$ on $A = \mathbb{Z}$
- $R_2 = \{(w, u) \mid l(w) = l(u)\}$ on $A = \{0,1\}^*$
- $R_3 = \{(0,0), (0,2), (2,0)\}$ on $A = \{0,1,2\}$

Which of these relations is transitive?

A. All of them
B. Just R_1
C. R_2 and R_3
D. Some other combination
Equivalence relations

Two formulations

A relation R on set A is an equivalence relation if it is reflexive, symmetric, and transitive.

\[x R y \text{ iff } x \text{ and } y \text{ are "similar"} \]

Partition A into equivalence classes, each of which consists of "similar" elements: collection of disjoint, nonempty subsets that have A as their union

\[x, y \text{ both in } A_i \text{ iff } x \text{ and } y \text{ are "similar"} \]
Equivalence classes

Given an equivalence relation R on set A, for a in A, the equivalence class of a is

$$[a]_R = \{s \mid (a,s) \text{ is in } R\}$$

Theorem 1: Let R be an equivalence relation on a set A. For elements a,b of A

i. $a \sim b$ iff

ii. $[a] = [b]$ iff

iii. $[a] \cap [b]$ is nonempty.
Relation to classes

Given an equivalence relation R on set A, its equivalence classes are the sets

$$[a]_R = \{s \mid (a,s) \text{ is in } R\}$$

Example $R=\{(w, u) \mid l(w) = l(u)\}$ on $A = \{0,1\}^*$

- $[0]_R = \{0,1\} = [1]_R$
- $[00]_R = \{00,01,10,11\} = [01]_R = [10]_R = [11]_R$
- etc.
The set of integers can be partitioned into four sets:

1. \(\{0, 4, 8, 12, \ldots, -4, -8, -12, \ldots\} \)
2. \(\{1, 5, 9, 13, \ldots, -3, -7, -11, \ldots\} \)
3. \(\{2, 6, 10, 14, \ldots, -2, -6, -10, \ldots\} \)
4. \(\{3, 7, 11, 15, \ldots, -1, -5, -9, \ldots\} \)

What equivalence relation on \(\mathbb{Z} \) has these sets as its equivalence classes?

A. \(x \, R \, y \) iff \(x \mod y = 4 \)
B. \(x \, R \, y \) iff \(x \mod 4 = y \mod 4 \)
C. \(x \, R \, y \) iff \(x \div 4 = y \)
D. \(x \, R \, y \) iff \(x \div 4 = y \div 4 \)
E. None of the above
The example

For a, b in \mathbb{Z} and m in \mathbb{Z}^+ we say a is congruent to b mod m iff

$$m \mid (a-b)$$

i.e.

and in this case, we write

$$a \equiv b \pmod{m}$$

Which of the following is true?

A. $5 \equiv 10 \pmod{3}$
B. $5 \equiv 1 \pmod{3}$
C. $5 \equiv 3 \pmod{3}$
D. $5 \equiv -1 \pmod{3}$
E. None of the above.
Claim: Congruence mod m is an equivalence relation

Proof:

Reflexive?
Symmetric?
Transitive?
Claim: Congruence mod m is an equivalence relation

Congruence classes: \([a]_m = \{s \mid (a,s) \text{ is in } R\} = \{s \mid a \mod m = s \mod m\}\)

What partition of the integers is associated with this equivalence relation?

E.g. \(m=6\)

\([0]_6 = \{s : 0 \equiv s \mod 6\}\)

\(\{0, 6, 12, 18, 24, \ldots\}\) \(\{3, 9, 15, 21, 27, \ldots\}\)

\(\{1, 7, 13, 19, 25, \ldots\}\) \(\{4, 10, 16, 22, 28, \ldots\}\)

\(\{2, 8, 14, 20, 26, \ldots\}\) \(\{5, 11, 17, 23, 29, \ldots\}\)
Arithmetic modulo \(m \)

\[
(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m
\]

\[
ab \mod m = ((a \mod m) (b \mod m)) \mod m
\]

Modular addition and multiplication are well-defined on equivalence classes!

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Application 1: Last digit

What's the last digit of 2017^{2017}?
A. 1
B. 3
C. 9
D. 7
E. Can't tell without a calculator.

Last digit of decimal representation of n is $n \mod 10$
Modular operations

We saw that, for all integers \(a, b\) and all positive integers \(m\),

\[(a + b) \mod m = (a \mod m + b \mod m) \mod m\]

\[ab \mod m = ((a \mod m)(b \mod m)) \mod m\]

Which of the following is also true?

A. \((a - b) \mod m = (a \mod m - b \mod m) \mod m\)
B. \((a/b) \mod m = (a \mod m / b \mod m) \mod m\)
C. \(a^b \mod m = (a \mod m)^{b \mod m} \mod m\)
D. More than one of the above.
E. None of the above.
Modular operations

\[(a-b) \mod m = ((a \mod m) - (b \mod m)) \mod m\]

\[(-b) \mod m = (m-b) \mod m\]

\[(a/b) \mod m = ((a \mod m) / (b \mod m)) \mod m\]

Counterexample: \[a = 16, \: b = 8, \: m = 10\]

\[a^b \mod m = ((a \mod m)^{\mod m}) \mod m\]

Counterexample: \[a = 2, \: b= 10, \: m = 10\]
Application 2: Proof by cases

Claim: The square of each integer is either divisible by 4 or has remainder 1 upon division by 4.

Proof:

Induction?
Contradiction?
Exhaustive?
Application 2: Proof by cases

Claim: The square of each integer is either divisible by 4 or has remainder 1 upon division by 4.

Proof: Let \(n \) be an integer and consider its remainder upon division by 4.

Four cases: remainder is 0, 1, 2, or 3.

...
Application 3: Pseudorandom generators

\[x_{n+1} = (ax_n+c) \mod m \]

Parameters:
- modulus \(m \)
- multiplier \(a \) \((2 \leq a < m)\)
- increment \(c \) \((0 \leq c < m)\)
- seed \(x_0 \) \((0 \leq x_0 < m)\)

What's the maximum number of terms before the sequence starts to repeat?

A. \(m \)
B. \(a \)
C. \(c \)
D. \(x_0 \)
E. Depends on the parameters; maybe never!
Application 3: Pseudorandom generators

\[x_{n+1} = (ax_n+c) \mod m \]

Parameters:
- modulus \(m \)
- multiplier \(a \) \((2 \leq a < m)\)
- increment \(c \) \((0 \leq c < m)\)
- seed \(x_0 \) \((0 \leq x_0 < m)\)

\(m=8, \ a=5, \ c=1, \ x_0=1 \)
\(1, 6, 7, 4, 5, 2, 3, 0, 1, 6, 7, 4, 5, 2, 3, \ldots \)

\(m=8, \ a=5, \ c=4, \ x_0=1 \)
\(1, 1, 1, 1, 1, \ldots \)