Tomorrow: Discussiont Review Oniz due Saturday: HW7 due DISCRETE MATH

Fall 2017

http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

Today's learning goals

- Define and compute the cardinality of a set.
- Use functions to compare the sizes of sets.
- Classify sets by cardinality into: Finite sets, countable sets, uncountable sets.
- Explain the central idea in Cantor's diagonalization argument.

Rosen Section 2.5

For all sets, we **define**

|A| = |B| if and only if there is a bijection between them.

Lemmas ... how would you prove each one?

• If A and B are countable sets, then A U B is countable.

Theorem 1, p. 174

- If A and B are countable sets, then A x B is countable.
- If A is finite, then A* is countable.
- If A is a subset of B, to show that |A| = |B|, it's enough to give a 1-1 function from B to A or an onto function from A to B.
- If A is a subset of a countable set, then it's countable.

Exercise 16, p. 176

• If A is a superset of an uncountable set, then it's uncountable. Exercise 15, p. 176

Rosen p. 172

• Countable sets A is finite or $|A| = |Z^+|$ (informally, can be listed out)

Examples: Ø
$$\{x\in\mathbb{Z}|x^2=1\}$$
 $\mathcal{P}(\{1,2,3\})$ \mathbb{Z}^+ and also ...

- the set of odd positive integers
- the set of all integers
- the set of **positive rationals**
- the set of negative rationals
- the set of rationals
- the set of nonnegative integers
- the set of all bit strings {0,1}*

Example 3 Example 4

Rosen p. 172

• Countable sets A is finite or $|A| = |Z^+|$ (informally, can be listed out)

Examples: $\emptyset \quad \{x \in \mathbb{Z} | x^2 = 1\}$ and also ...

- the set of odd positive integers
- the set of all integers
- the set of **positive rationals**
- the set of negative rationals
- the set of rationals
- the set of **nonnegative integers**
- the set of all bit strings {0,1}*

Proof strategies?

- List out all and only set elements (with or without duplication)

- Give a one-to-one function from A to (a subset of) a set known to be countable There is an uncountable set! Rosen example 5, page 173-174

Cantor's diagonalization argument

Theorem: For every set A, $|A| \neq |\mathcal{P}(A)|$

There is an uncountable set! Rosen example 5, page 173-174

Cantor's diagonalization argument

Theorem: For every set A, $|A| \neq |\mathcal{P}(A)|$ $\neg \exists \ \neg \exists \ \neg$

An example to see what is necessary. Consider A = $\{a,b,c\}$. What would we need to prove that |A| = |P(A)|? There is an uncountable set! Rosen example 5, page 173-174

Cantor's diagonalization argument

Theorem: For every set A, $|A| \neq |\mathcal{P}(A)|$ **Proof:** (Proof by contradiction) Assume towards a contradiction that $|A| = |\mathcal{P}(A)|$. By definition, that means there is a **bijection** $A \rightarrow \mathcal{P}(A)$.

$$\begin{array}{c} X \\ e^{k} \\ e^{$$

There is an uncountable set! Rosen example 5, page 173-174 Cantor's diagonalization argument

Consider the subset D of A defined by, for each a in A:

Rosen p. 172

Uncountable sets
Infinite but not in bijection with Z⁺

Examples: the power set of any countably infinite set and also ...

- the set of real numbers
- (0,1)
- (0,1]
 - $\begin{bmatrix} 0, 1 \end{bmatrix}$

Example 5 Example 6 (++) Example 6 (++)

Exercises 33, 34

Why the real numbers?

If this little interval is already uncountable, then R is definitely uncountable!

$$\begin{array}{rcl} 17 = 2^{4} + 2^{\circ} = (1000) \\ 0.5 = 0.10000 \\ 1 = 0.00011 \\ 0.1 \\ 0.0$$

(0,1)

"Looks like" a power set of a countably infinite set? (0) $b_1 b_2 b_3 b_4 \dots$ binary expansion of number maps to find about $| \in set$ { x | x is a positive integer and b_x is 1}

Theorem: The set (0,1) is uncountable

Proof: (Proof by contradiction) Assume towards a contradiction that (0,1) is countable. By definition, that means there is a **bijection** which lists all real numbers in this interval.

Diagonalization

Example 5 Rosen p. 173

Theorem: The set (0,1) is uncountable

Proof: (Proof by contradiction) Assume towards a contradiction that (0,1) is countable. By definition, that means there is a **bijection** which lists all real numbers in this interval.

$$\begin{split} f(1) &= r_1 = 0. \ b_{11} \ b_{12} \ b_{13} \ b_{14} \ \dots \\ f(2) &= r_2 = 0. \ b_{21} \ b_{22} \ b_{23} \ b_{24} \ \dots \\ f(3) &= r_3 = 0. \ b_{31} \ b_{32} \ b_{33} \ b_{34} \ \dots \\ f(4) &= r_4 = 0. \ b_{41} \ b_{42} \ b_{43} \ b_{44} \ \dots \\ \end{split}$$

Diagonalization

Example 5 Rosen p. 173

Theorem: The set (0,1) is uncountable

Proof: (Proof by contradiction) Assume towards a contradiction that (0,1) is countable. By definition, that means there is a **bijection** which lists all real numbers in this interval. $f(1) = (r_1) = 0$. $b_{11} b_{12} b_{13} b_{14} \dots$

$$f(1) = (r_1) = 0. \ b_{11} \ b_{12} \ b_{13} \ b_{14} \dots$$

$$f(2) = r_2 = 0. \ b_{21} \ b_{22} \ b_{23} \ b_{24} \dots$$

$$\frac{1}{7} \ f(3) = r_3 = 0. \ b_{31} \ b_{32} \ b_{33} \ b_{34} \dots$$

$$f(4) = r_4 = 0. b_{41} b_{42} b_{43} b_{44} \dots$$

We're going to find a number **d** that is not in this list.

$$d = 0. b_1 b_2 b_3 b_4 \dots$$

where $b_i = 1 - b_{ii}$. By this definition: d can't equal any f(i). So: f is not onto!

What about the irrational numbers?

Claim: The set of irrational numbers is / isn't countable. Proof: