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Today's learning goals
• Represent functions in multiple ways

• Define and prove properties of: domain of a function, image of a function, composition of functions

• Determine and prove whether a function is one-to-one, onto, bijective

• Apply the definition and properties of floor function, ceiling function, factorial function

• Define and compute the cardinality of a set: Finite sets, countable sets, uncountable sets

• Use functions to compare the sizes of sets

Also: questions from the review quiz

Concatenating strings  if w is a string then 

and if w1 and w2 are both strings, x is 0 or 1 then 

Length function on strings (Basis) (Recursive) when w a string, x 0 or 1



Flavors of induction
• Mathematical induction

• Strong induction

• Structural induction



Fibonacci numbers Rosen p. 158, 347

Theorem: For each integer n >= 2, fn >= 1.5n-2

Proof by strong mathematical induction:

Basis step:

(Strong) induction step:



Looking back
• We now have all the tools we need to rigorously prove

• Correctness of greedy change-making algorithm with quarters, dimes, nickels, and 

pennies Proof by contradiction, Rosen p. 199

• The division algorithm is correct Strong induction, Rosen p. 341

• Russian peasant multiplication is correct Induction

• Largest n-bit binary number is 2n-1 Induction, Rosen p. 318

• Correctness of base b conversion (Algorithm 1 of 4.2), Strong induction

• Size of the power set of a finite set with n elements is 2n Induction, Rosen p. 323

• Any int greater than 1 can be written as product of primes Strong induction, Rosen p. 323

• There are infinitely many primes Proof by contradiction, Rosen p. 260

• Sum of geometric progressions when r≠1, Induction, Rosen p. 318



Every number has a binary representation
Theorem: Every positive integer can be written as a sum of distinct powers of 2.

Proof by strong mathematical induction:

Basis step:

(Strong) induction step:



Cautionary tales
• The basis step is absolutely necessary … and might need more than 

one!

• Make sure to stay in the domain.

Recommended practice

Section 5.1 #49, 50, 51

Section 5.2 #32

• A few examples do not guarantee a pattern: 

cake cutting conundrum.  Join

all pairs of points among N marked

on circumference of cake.



Where to now?
Apply proof strategies to new concepts

• Sizes of sets – what's possible, impossible?

• Number theory – cryptography, hashing, proof by cases



Functions Rosen Sec 2.3; p. 138

Function Mapping Transformation

Domain
Codomain



Unique?
How do we express 

with our notation?



To specify a function
(1) Domain (2) Codomain (3) Assignment

Operations on functions Rosen p. 141,147

If f: A  R, g: A  R f+g: A  R fg: A  R

If f: B  C, g: A  B f   g: A  C



Properties of functions Rosen p. 143

• A function f is   onto means at least one input for every output

(surjective)
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Properties of functions Rosen p. 141

• A function f is one-to-one means no duplicate images

(injective)
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How can we formalize this?

A. 

B. 

C.

D. 

E. None of the above



• A function f is one-to-one means no duplicate images

(injective)
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Properties of functions Rosen p. 141



Onto? One-to-one?

Consider the function over domain and codomain {1,2,3,4,5} defined by
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This function is

A. Well defined, onto, and one-to-

one.

B. Well defined, but neither onto nor 

one-to-one.

C. Well defined, onto, but not one-to-

one.

D. Not well-defined, not onto, not 

one-to-one.

E. None of the above.



Onto? One-to-one?

Consider the function over domain and codomain R≥0 defined by

f(x) = x2

This function is

A. Well defined, onto, and one-to-one.

B. Well defined, but neither onto nor one-

to-one.

C. Well defined, onto, but not one-to-one.

D. Not well-defined, not onto, not one-to-

one.

E. None of the above.



Proving a function is … Rosen p. 145

Define f:{0,1}*  N by f(w) = l(w) = |w|.  Recall: recursive definition

Fact: This function is onto.



Proving a function is …

Define f:{0,1}*  N by f(w) = l(w) = |w|.  Recall: recursive definition

Fact: This function is not one-to-one.



Proving a function is …

Let A = {1,2,3} and B = {2,4,6}.  

Define a function from the power set of A to the power set of B by: 

Well-defined?

Onto?

One-to-one?



One-to-one + onto Rosen p. 144

one-to-one correspondence

bijection

invertible

The inverse of a function f: AB is 

the function g: BA such that 
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Functions and subsets Rosen Theorem 2, p 174

One-to-one:

Onto: 

Bijection: both one-to-one and onto

Which of the following is true? 

A. If A is a subset of B then there is a one-to-one function from A to B

B. If A is a subset of B then there is an onto function from A to B

C. If A is a subset of B then there is a bijection from A to B

D. None of the above.

E. I don't know



One-to-one + onto Rosen p. 144
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Fact: for finite sets A and B, 

there is a bijection between 

them if and only if |A| =|B|.



Beyond finite sets Rosen Section 2.5

For all sets, we say 

|A| = |B| if and only if there is a bijection between them.

Which of the following is true? 

A. |Z| = |N|

B. |N| = |Z+|

C. |Z| = |{0,1}*|

D. All of the above.

E. None of the above.



Sizes and subsets Rosen Theorem 2, p 174

For all sets A, B we say 

|A| ≤ |B| if there is a one-to-one function from A to B.

|A| ≥ |B| if there is an onto function from A to B.

Cantor-Schroder-Bernstein Theorem: |A| = |B| iff |A| ≤ |B| and |A| ≥ |B|

Which of the following is true? 

A. If A is a subset of B then |A| ≤ |B|

B. If A is a subset of B then |A| ≠ |B|

C. If A is a subset of B then |A| = |B|

D. None of the above.

E. I don't know



Beyond finite sets Rosen Section 2.5

For all sets, we say 

|A| = |B| if and only if there is a bijection between them.

Which of the following is true? 

A. |Q| = |Q+|

B. |Q+| = |N x N|

C. |N| = |Q|

D. All of the above.

E. None of the above.



Cardinality Rosen Defn 3 p. 171

• Finite sets |A| = n for some nonnegative int n

• Countably infinite sets |A| = |Z+| (informally, can be listed out)

• Uncountable sets Infinite but not in bijection with Z+


