CSE 20 DISCRETE MATH

Fall 2017

http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

Today's learning goals

- Represent functions in multiple ways
- Define and prove properties of: domain of a function, image of a function, composition of functions
- Determine and prove whether a function is one-to-one, onto, bijective
- Apply the definition and properties of floor function, ceiling function, factorial function
- Define and compute the cardinality of a set: Finite sets, countable sets, uncountable sets

Use functions to compare the sizes of sets

Also: questions from the review quiz

Basis 5-Ep

Concatenating strings if w is a string then $w \cdot \lambda = w$ and if w_1 and w_2 are both strings, x is 0 or 1 then

Recursive Step

$$w_1 \cdot w_2 x = (w_1 \cdot w_2) x$$

Length function on strings (Basis) $l(\lambda) = 0$ (Recursive) l(wx) = l(w) + 1 when w a string, x 0 or 1

Flavors of induction $\sqrt{}$

 $\int_{\mathcal{X}} P(\mathbf{x}).$

Mathematical induction

Strong induction

Strong /H' Assume P(...) tow at more

Structural induction

Domain: rec def set

Domain Exet X>, b

Fibonacci numbers

$$f_0 = 1, \ \underline{f_1 = 1}, \ \underline{f_n = f_{n-1}} + \underbrace{f_{n-2}}$$

Theorem: For each integer $n \ge 2$, $f_n \ge 1.5^{n-2}$

Proof by strong mathematical induction:

Basis step:

(Strong) induction step:

Rosen p. 158, 347

Looking back

- We now have all the tools we need to rigorously prove
 - Correctness of greedy change-making algorithm with quarters, dimes, nickels, and pennies Proof by contradiction, Rosen p. 199
 - The division algorithm is correct Strong induction, Rosen p. 341
 - Russian peasant multiplication is correct Induction
 - Largest n-bit binary number is 2ⁿ-1 Induction, Rosen p. 318
 - Correctness of base b conversion (Algorithm 1 of 4.2), Strong induction
 - Size of the power set of a finite set with n elements is 2ⁿ *Induction, Rosen p. 323*
 - Any int greater than 1 can be written as **product of primes** Strong induction, Rosen p. 323
 - There are infinitely many primes Proof by contradiction, Rosen p. 260
 - Sum of geometric progressions $\sum_{i=0}^n ar^j = \frac{ar^{n+1}-a}{r-1}$ when r≠1, Induction, Rosen p. 318

Every number has a binary representation

Theorem: Every positive integer can be written as a sum of distinct powers of 2.

P(k)

Proof by strong mathematical induction:

Basis step: \mathcal{W}^{rs} $\mathcal{P}(1)$

Note 1=2° « power of 2

(Strong) induction step: Let k be arb 705 int.

Assume (SIH) jean be expressed as something for each 15/5k.

WTS K+1 can be expressed as sum of distinct to powers it 2

Cautionary tales

- The basis step is absolutely necessary ... and might need more than one!
- Make sure to stay in the domain.

Recommended practice

Section 5.1 #49. 50. 51

Section 5.2 #32

 A few examples do not guarantee a pattern: cake cutting conundrum. Join all pairs of points among N marked on circumference of cake.

Where to now?

Apply proof strategies to new concepts

Sizes of sets – what's possible, impossible?

Number theory – cryptography, hashing, proof by cases

Rec Defo

Functions

Rosen Sec 2.3; p. 138

Function

Mapping

 $\forall a (a \in D \to \exists! b (b \in C \land f(a) = b))$

Transformation
exactly one and or
arrow from each of

Unique?

abo written Tb

How do we express

$$\forall a (a \in D \to \exists! b (b \in C \land f(a) = b))$$

with our notation?

$$\int_{-\infty}^{\infty} x \, \mathcal{P}(x) = \int_{-\infty}^{\infty} \mathcal{P}(x) \, \mathcal{P}(x) \, \mathcal{P}(y) \, \mathcal{P}(y)$$

TP(.) is Tabout everything else in Innain

To specify a function

(1) Domain

(2) Codomain

(3) Assignment

Operations on functions

Rosen p. 141,147

If f: $A \rightarrow R$, g: $A \rightarrow R$

$$f+g: A \rightarrow R$$

$$fg: A \rightarrow R$$

Proti M

If f: B
$$\rightarrow$$
 C, g: A \rightarrow B

Properties of functions

Rosen p. 143

possible

 A function f is onto means at least one input for every output (surjective)

 A function f is one-to-one means no duplicate images (injective)

How can we formalize this?

$$\forall a \forall b ((a \in D \land b \in D) \to f(a) \neq f(b))$$

$$\mathsf{B}. \forall a \forall b ((\underline{a} \in D \land b \in D) \to (\underline{f(a)} = \underline{f(b)} \to \underline{a = b}))$$

$$\forall a \forall b ((a \in C \land b \in C) \to a \neq b)$$

$$\forall a \forall b ((a \in C \land b \in C) \rightarrow f(a) \neq f(b))$$

E. None of the above

Rosen p. 141

 A function f is one-to-one means no duplicate images (injective)

$$\forall a \forall b ((a \in D \land b \in D) \rightarrow (f(a) = f(b) \rightarrow a = b))$$

$$\forall a \forall b ((a \in D \land b \in D) \rightarrow (a \neq b \rightarrow f(a) \neq f(b)))$$

Onto the (bec-)-la (as Dinta) Onto? One-to-one? (LED, LED) - (fair(b) -) a-b)

Consider the function over domain and codomain {1,2,3,4,5} defined by

This function is

- A. Well defined, onto, and one-toone.
- B. Well defined, but neither onto nor one-to-one.
- C. Well defined, onto, but not one-toone.
- D. Not well-defined, not onto, not one-to-one.

Consider the function over domain and codomain R≥0 defined by

This function is

- B. Well defined, but neither onto nor one-to-one.
- C. Well defined, onto, but not one-to-one.
- D. Not well-defined, not onto, not one-to-one.
- E. None of the above.

Proving a function is ...

Rosen p. 145

Define
$$f:\{0,1\}^* \to \mathbb{N}$$
 by $f(w) = |w|$. Recall: recursive definition
$$\begin{cases} f(\lambda) = 0 & \text{Basis Step} \\ f(w0) = f(w) + 1 & \text{Rec Step} \\ f(w1) = f(w) + 1 & \text{Rec Step} \end{cases}$$
Fact: This function is onto.
$$\begin{cases} b \in \mathbb{N} & \exists e \ (a \in \{0,1\}^* \land f(a) = b) \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$
Fact: This function is onto.
$$\begin{cases} f(w) = f(w) + 1 & \text{Rec Step} \\ f(w) = f(w) + 1 & \text{Rec Step} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$
Fact: This function is onto.
$$\begin{cases} f(w) = f(w) + 1 & \text{Rec Step} \\ f(w) = f(w) + 1 & \text{Rec Step} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall: recursive definition} \end{cases}$$

$$\begin{cases} f(w) = |w| & \text{Recall$$

Proving a function is ...

Define $f:\{0,1\}^* \rightarrow \mathbb{N}$ by f(w) = |w|. Recall: recursive definition

$$\begin{cases} f(\lambda) = 0 \\ f(w0) = f(w) + 1 \\ f(w1) = f(w) + 1 \end{cases}$$

Fact: This function is not one-to-one.

Pf WTS 7 Ha Hb (kero, 15/2 be rounties)

Consider countriex a-0, b=1,

$$f(x) = f(x) = f(x) = f(x) + 1 = 0 + 1 = 1$$

 $f(y) = f(x) = f(x) = 0 + 1 = 1$

Proving a function is ...

Let $A = \{1,2,3\}$ and $B = \{2,4,6\}$.

Define a function from the power set of A to the power set of B by:

Well-defined?
Onto?
One-to-one?

One-to-one + onto

Rosen p. 144

one-to-one correspondence

bijection

invertible

The **inverse** of a function $f: A \rightarrow B$ is the function $g: B \rightarrow A$ such that

$$\forall b(b \in B \to (g(b) = a \leftrightarrow f(a) = b))$$

Functions and subsets

Rosen Theorem 2, p 174

One-to-one:
$$\forall a \forall b ((a \in D \land b \in D) \rightarrow (f(a) = f(b) \rightarrow a = b))$$

Onto:
$$\forall b(b \in C \rightarrow \exists a (a \in D \land f(a) = b))$$

Bijection: both one-to-one and onto

- A. If A is a subset of B then there is a one-to-one function from A to B
- B. If A is a subset of B then there is an onto function from A to B
- C. If A is a subset of B then there is a bijection from A to B
- D. None of the above.
- E. I don't know

One-to-one + onto

Rosen p. 144

For all sets, we say

|A| = |B| if and only if there is a bijection between them.

- A. |Z| = |N|
- B. $|N| = |Z^+|$
- C. $|\mathbf{Z}| = |\{0,1\}^*|$
- D. All of the above.
- E. None of the above.

Rosen Theorem 2, p 174

For all sets A, B we say

 $|A| \le |B|$ if there is a one-to-one function from A to B.

 $|A| \ge |B|$ if there is an onto function from A to B.

Cantor-Schroder-Bernstein Theorem: |A| = |B| iff |A| ≤ |B| and |A| ≥ |B|

- A. If A is a subset of B then $|A| \le |B|$
- B. If A is a subset of B then $|A| \neq |B|$
- C. If A is a subset of B then |A| = |B|
- D. None of the above.
- E. I don't know

For all sets, we say

|A| = |B| if and only if there is a bijection between them.

- A. $|Q| = |Q^+|$
- B. $|Q^+| = |N \times N|$
- C. |N| = |Q|
- D. All of the above.
- E. None of the above.

Cardinality

Rosen Defn 3 p. 171

Finite sets

|A| = n for some nonnegative int n

Countably infinite sets

 $|A| = |Z^+|$ (informally, can be listed out)

Uncountable sets

Infinite but not in bijection with **Z**⁺