

CSE 20 DISCRETE MATH

Fall 2017

http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

Today's learning goals

- Explain the steps in a proof by mathematical and/or structural induction
- Use a recursive definition of a set to determine the elements of the set
- Write a recursive definition of a given set
- Use structural induction to prove properties of a recursively defined set
- Define functions from N to R using recursive definitions

Rosen p. 311

To show that some statement P(k) is true about all nonnegative integers k,

- 1. Show that it's true about 0 i.e. P(0)
- 2. Show $\forall k \ (P(k) \rightarrow P(k+1))$ Hence conclude P(1),...

Mathematical induction*

Rosen p. 311

To show that some statement P(k) is true about all nonnegative integers $k \ge b$,

- Show that it's true about b i.e. P(b)
- 2. Show $\forall k \ (P(k) \rightarrow P(k+1))$ Hence conclude P(b+1),...

Sizes of (finite) sets

If S is a set with exactly n distinct elements, with n a nonnegative integer, then S is finite set and |S| = n.

$$|\{\}| = 0$$
 $|\{1\}| = 1$ $|\{1,1,2,3,8/4\}| = 3$

For A, B finite sets:

$$|A \vee B| = |A| + |B| - |A \cap B|$$

$$|A \times B| = |A| \cdot |B|$$

if A has size n, then the power set of A has size 2ⁿ.

Rosen Sec 5.3

To specify a **function**, we need to specify its

- 1. domain input
- 2. codomain type of outputs
- 3. assignment / rule formula, table of values, induction Rosen p. 138

Rosen Sec 5.3

For functions $f: \mathbb{N} \to X$

- define by a (closed-form) formula

f(0) f(1) f(2) f(3) f(4)

- 1. domain N
- 2. codomain X
- 3. assignment / rule formula, table of values, induction

Rosen Sec 5.3

Sequences are functions too!

For functions $f: \mathbb{N} \to X$

- define by a (closed-form) formula

f(0) f(1) f(2) f(3) f(4) ... a_0 a_1 a_2 a_3 a_4 ...

- domain N
- 2. codomain X
- 3. assignment / rule formula, table of values, induction

Rosen Sec 5.3

For functions $f: \mathbb{N} \to X$

- define by a (closed-form) formula or ...

Basis step: Specify the value of the function at 0

Recursive step: Give a rule for finding its value at an integer from its values at smaller integers

Which of the following functions / sequences have recursive definitions?

A.
$$n! = n (n-1)(n-2) - 3 - 2 - 1$$

$$D.\sum_{i=1} (i^2 + i)$$

B. 2ⁿ

E. All of the above.

Recursive definitions, part 2 n! n! = n(n-1)! for n > 0.

Rosen Sec 5.3

$$0! = 1$$
,

$$n! = n(n-1)!$$

for
$$n > 0$$

$$2^0 = 1$$
,

$$2^n$$
 $2^n = 2(2^{n-1})$

for
$$n > 0$$
.

2, -8, 32, -128, 512, ...

$$a_0 = 2$$
,

$$a_n = -4 a_{n-1}$$

for
$$n > 0$$
.

$$\sum_{i=1}^n g(n) = g(1) + g(2) + \cdots + g(n)$$

$$\sum_{i=1}^n g(i) = 0 , \sum_{i=1}^n g(i) = g(1) , \text{ and } \sum_{i=1}^n g(i) = g(n) + \sum_{i=1}^{n-1} g(i) \text{ for n>1}.$$

Extra mathematical induction practice

Rosen Sec 5.3

Define a set S by

```
ex: [N = {0,1,2,3,4,...}
```

```
{ ... }
{ x | P(x) }
```

Recursive definition:

Basis step - Specify initial collection of elements.

Recursive step – Provide rules for forming new elements in the set from those already known to be in the set.

if $n \in \mathbb{N}$ then $n+l \in \mathbb{N}$

Example: $\{x \mid x \text{ is an int, } x > \underline{3}\}$

Rosen Sec 5.3

Let S be the subset of the set of integers defined recursively by

Basis step: $1 \in S$

Recursive step: If $a \in S$, then $a + 2 \in S$.

What's an equivalent description of this set?

- A. All positive multiples of 2.
- All positive even integers.
- C.) All positive odd integers.
- D. All integers.
- E. None of the above.

$$\{1, 3, 5, 7, \ldots\}$$

Recursive definitions, part 2 Rosen Sec 5.3 page 349

The set of **bit strings** {0,1}* s defined recursively by

Basis step: $\lambda \in \{0,1\}^*$ where λ is the empty string.

Recursive step: If $w \in \{0,1\}^*$, then $w0 \in \{0,1\}^*$ and $w1 \in \{0,1\}^*$

Also known as binary sequences

Recursive definitions, part 2 Rosen Sec 5.3 page 349

The set of **bit strings** {0,1}* is defined recursively by

Basis step: $\lambda \in \{0,1\}^*$ where λ is the empty string.

Recursive step: If $w \in \{0,1\}^*$, then $w0 \in \{0,1\}^*$ and $w1 \notin \{0,1\}^*$

Which of the following are **not** bit strings?

1 = 21 so is result of applying (
000 = (0.0)0 = (0.0)0 = (0.0)0

$$00 = (00)0 = (0.0)0 = (0.0)$$

010101

10110011100011111000011111100000111

Also known as

binary sequences

Recursive definitions in CS

- Strings encode integers, everything else
- Data structures linked lists, trees, graphs

How do we prove a fact is true about **all** strings?

Structural induction

Rosen p. 354

To show that some statement P(k) is true about all elements of a recursively defined set S,

- 1. Show that it's true for each element specified in the basis step to be part of S.
- 2. Show that if it's true for each of the elements used to construct new elements in recursive step, then it holds for these new elements.

Structural induction, example Rosen Sec 5.3

Define the **subset S** of the set of all bit strings, {0,1}*, by

Basis step: $\lambda \in S$ where λ is the empty string.

Recursive step: If $w \in S$, then each of $10w \in S, 01w \in S$

Structural induction, example Rosen Sec 5.3

Define the **subset S** of the set of all bit strings, {0,1}*, by

Basis step: $\lambda \in S$ where λ is the empty string.

Recursive step: If $w \in S$, then each of $10w \in S, 01w \in S$

Claim: Every element in S has an equal number of 0s and 1s.

Pf by structural induction

Basis Step Wis 2 has an equal # of 0s is so equal # of 0s

Structural induction, example Rosen Sec 5.3

Define the **subset S** of the set of all bit strings, {0,1}*, by

Basis step: $\lambda \in S$ where λ is the empty string.

Recursive step: If $w \in S$, then each of $10w \in S, 01w \in S$

Claim: Every element in S has an equal number of 0s and 1s.

Proof: Basis step – WTS that empty string has equal # of 0s and 1s

Recursive step – Let w be an arbitrary element of S.

Assume, as the IH that w has equal # of 0s and 1s.

WTS that 10w, 01w each have equal # of 0s, 1s.

Rosen Sec 5.3

Define a function $f: S \rightarrow X$ by

- specifying f(a) when a is in the basis collection of elements of S
- giving a formula for computing f(x) when x is built from other elements a_1 , a_2 etc. based on values of $f(a_1)$, $f(a_2)$, etc.

- 1. domain S, a recursively defined set
- 2. codomain X
- 3. assignment / rule recursively defined

Rosen Sec 5.3

Define a function $f: S \rightarrow X$ by

- specifying f(a) when a is in the basis collection of elements of S
- giving a formula for computing f(x) when x is built from other elements a_1 , a_2 etc. based on values of $f(a_1)$, $f(a_2)$, etc.

$$w^0$$
, w^1

Example: how do you define the length function $J: \{0,1\}^* \rightarrow N$?

Basis Stop
$$l(x) = 0$$

Recusive Stop If $w \in \{0,13^*, l(w)\}= l(w)+1$

Reminders

- Office hours may be shifted check Google calendar
- HW5 due Saturday night

Next class: more applications + variants of induction