SSE 20 a speedy, grading marathon!

Fall 2017
http://cseweb.ucsd.edu/classes/fa17/cse20-ab/

Today's learning goals

- Correctly prove statements using appropriate style conventions, guiding text, notation, and terminology
- Define and differentiate between important sets
- Use correct notation when describing sets: $\{\ldots\}$, intervals
- Define and prove properties of: subset relation, power set, Cartesian products of sets, union of sets, intersection of sets, disjoint sets, set differences, complement of a set

Overall strategy

- Do you believe the statement? its negation?
- Try some small examples.
- Determine logical structure + main connective.
- Determine relevant definitions.
- Map out possible proof strategies.
- For each strategy: what can we assume, what is the goal?
- Start with simplest, move to more complicated if/when get stuck.

Direct proof, construction, exhaustive, etc.

Contradiction, hidden cases

Some definitions

Set: unordered collection of elements

$$
r^{2} \text { sin element of }
$$

$\mathrm{A}=\mathrm{B}$ iff $\forall x(x \in A \leftrightarrow x \in B)$

How to specify these elements?

- Roster
- Set builder $\{x \in U \mid P(x)\}$

Some definitions,
"A is 2 Subset B
Subset: $A(B$ means $\quad \forall x(x \in A \rightarrow x \in B)$
For sets A and $\mathrm{B}, \mathrm{A}=\mathrm{B}$ if and only if both $A \subseteq B$ and $B \subseteq A$

Why a definition for equality?

$$
\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\} \quad, \quad\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q>0, \operatorname{gcd}(p, q)=1\right\}
$$

Some definitions

Subset: $A \subseteq B$ means $\quad \forall x(x \in A \rightarrow x \in B)$
$\forall A \forall B[(A=B) \longleftrightarrow(A \subseteq B \wedge B \leq A)$
Theorem: For sets A and $\mathrm{B}, \mathrm{A}=\mathrm{B}$ if and only if both

$$
A \subseteq B \quad \text { and } B \subseteq A
$$

Proof: Let A, B be arbitrary $x+3$. Wis ($A=B$ then $A \leq B$ and $B \leq A$, (2) if $A \leq B$ and $B \leq A$, then $A=B$
What's the logical structure of this statement?
A. Universal conditional.
C. Conjunction (and)
(B) Biconditional.
D. None of the above.

Some definitions
Subset: $A \subseteq B \quad$ means $\quad \forall x(x \in A \rightarrow x \in B)$
Proper subset means $A \subseteq B$ and $A \neq B$ denoted $A \subsetneq B$
When A is a subset of B, we say B is a superset of A. de noted $B \supseteq A$

Some definitions
Empty set: $\quad \emptyset=\{ \}=\{x \mid x \neq x\}$

Which of the following is not true?
A. $\emptyset \subseteq \emptyset$ is true
B.) $\emptyset \in \emptyset$ not true bile ϕ has no elements.
C. For any set $\mathrm{A}, \emptyset \subseteq A$ is true
D. For some set $B, \bar{\emptyset} \in B \quad$ construction $B=\{\varnothing, \mathbb{Z}, 1, \pi\}$
E. More than one of the above.

For all sets $B, \phi \in B$ by counterexample or $\phi_{\{1\}}$

Operations on sets

Power set: For a set S, its power set is the set of all subsets of S.

$$
\begin{aligned}
\mathcal{P}(S)= & \{A \subseteq A \subseteq S\} \\
& \text { "such that" }
\end{aligned}
$$

$\mathcal{P}(\{2\})$

$$
\begin{array}{r}
\{2\} \subseteq\{2\} \\
\varnothing=\{ \} \subseteq\{2\}
\end{array}
$$

$$
P(\{2\})=\{\phi, \quad\{2\}\}
$$

Operations on sets

Power set: For a set S, its power set is the set of all subsets of $\mathrm{S} . \quad \mathcal{P}(S)=\{A \backslash A \subseteq S\}$

Which of the following is not necessarily (always) true?
A. $S \in \mathcal{P}(S)$ WTs $S \subseteq S$ ie. WTs $\forall x \quad(x \in S \rightarrow x<S$
B. $\emptyset \in \mathcal{P (S)}$ wis $\varnothing \subseteq S$ T
\varnothing. $\emptyset \subseteq \mathcal{P}(S)$
D. $\emptyset \in S$ ex. $S=\{1\} \quad \phi \notin S$ ex. $\mathbb{Z} \phi \in \mathbb{Z}$.
E. None of the above.

Operations on sets

Given two sets A, B we can define
$A \cap B$
$A \cup B$
$A-B$
$A \times B$

Intersection of A and B

Union of A and B

Difference of A and B

Cartesian product of A and B

\mathbb{E} events

Operations on sets

Rosen Sections 2.1, 2.2

Given two sets A, B we can define

$$
\begin{aligned}
A \cap B & =\{x \mid x \in A \wedge x \in B\} \\
A \cup B & =\{x \mid x \in A \vee x \in B\} \\
A-B & =\{x \mid x \in A \wedge x \notin B\} \\
A \times B & =\{(x, y) \mid x \in A \wedge y \in B\}
\end{aligned}
$$

Examples

Operations on sets

Given two sets A, B we can define

$$
\begin{aligned}
& A \cap B=\{x \mid x \in A \wedge x \in B\} \\
& A \cup B=\{x \mid x \in A \vee x \in B\} \\
& A-B=\{x \mid x \in A \wedge x \notin B\} \\
& A \times B=\{(x, y) \mid x \in A \wedge y \in B\}
\end{aligned}
$$

Which of these is true?
A. $A \cap B=B \cap A$
B. $A \cup B=B \cup A$
C. $A-B=B-A$
D. $A \times B=B \times A$
E. None of the above.

Operations on sets

Given two sets A, B we can define

$$
\begin{aligned}
& A \cap B=\{x \mid x \in A \wedge x \in B\} \\
& A \cup B=\{x \mid x \in A \vee x \in B\} \\
& A-B=\{x \mid x \in A \wedge x \notin B\} \\
& A \times B=\{(x, y) \mid x \in A \wedge y \in B\}
\end{aligned}
$$

Which of the following can't be labelled in this Venn diagram?
A. $A \cap B$
B. $A \cup B$
C. $A-B$
D. $A \times B$
E. None of the above.

Operations on sets

Given two sets A, B we can define

$$
\begin{aligned}
& A \cap B=\{x \mid x \in A \wedge x \in B\} \\
& A \cup B=\{x \mid x \in A \vee x \in B\} \\
& A-B=\{x \mid x \in A \wedge x \notin B\}
\end{aligned}
$$

When can you conclude that A is a subset of B ?
A. When $A \cup B=A$
B. When $A-B=A$
C. When $A-B=B-A$
D. When $A \cap B=A$
E. None of the above.

Some definitions
Disjoint sets: two sets are disjoint if their intersection is the empty set.

Examples?

$$
\{1,2,3\} \cap\{4,5,6\}
$$

$$
=\varnothing
$$

if $A \cap B=\varnothing$ then $A-B=A$ and $B-A=B$

Some definitions

Disjoint sets: two sets are disjoint if their intersection is the empty set

Which of the following is not true?
A. $\emptyset \subseteq \emptyset$
B. $\emptyset \in \emptyset$
C. For any set $\mathrm{A}, \emptyset \subseteq A$
D. For some set $\mathrm{B}, \emptyset \in B$
E. More than one of the above.

Generalized union / intersection fosenp , 132

Union and intersection are associative

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}
$$

$\{1\}$

Analogue: Summation notation

Ex (1): Write an expression for the sum of the first n positive integers.
Ex (2): Write an expression for the sum of the first n positive even integers.
Ex (3): Write an expression for the sum of the first n positive odd integers.

