Discussion 8

1. Is each of the following sets finite or infinite?
 (a) The negative integers
 (b) The even integers
 (c) The integers less than 100
 (d) The real numbers between 0 and \(\frac{1}{2} \)
 (e) The positive integers less than 1,000,000
 (f) The integers that are multiples of 7
 (g) The integers that are divisors of 2017
 (h) The set \(\{2, 3\} \times \mathbb{Z}^+ \)
 (i) The set \(\{2, 3\} \cap \mathbb{Z}^+ \)
 (j) The set \(\{2, 3\} \cup \mathbb{Z}^+ \)

2. Show that for any (nonempty) sets \(A, B, C \) and any functions \(f : A \to B \) and \(g : B \to C \), if \(f \) and \(g \) are one-to-one, then \(g \circ f \) is also one-to-one.
 Use this lemma to prove that if \(|A| \leq |B| \) and \(|B| \leq |C| \) then \(|A| \leq |C| \).
3. In Cantor’s diagonalization argument, we show that any function from a set to its power set is not a bijection. To get a better feel for this argument, show why each of the following specific functions are not bijections. Is each function one-to-one? Is each function onto?

(a) \(f : \{a, b, c\} \to \mathcal{P}(\{a, b, c\}) \) given by

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(b)</td>
<td>({a, b, c})</td>
</tr>
<tr>
<td>(c)</td>
<td>({a, b})</td>
</tr>
</tbody>
</table>

(b) \(f : \mathbb{N} \to \mathcal{P}(\mathbb{N}) \) given by \(f(n) = \{0, 1, \ldots, n\} \).

(c) \(f : \{0, 1\}^* \to \mathcal{P}(\{0, 1\}^*) \) given recursively by \(f(\lambda) = \emptyset \) and \(f(wx) = f(w) \cup \{x\} \).