
CSE 158 – Lecture 9
Web Mining and Recommender Systems

Text Mining

Prediction tasks involving text

What kind of quantities can we

model, and what kind of prediction

tasks can we solve using text?

Prediction tasks involving text

Does this

article have a

positive or

negative

sentiment

about the

subject being

discussed?

Prediction tasks involving text

What is the category/subject/topic of

this article?

Prediction tasks involving text

Which of these

articles are

relevant to my

interests?

Prediction tasks involving text

Find me articles similar to this one

related

articles

Prediction tasks involving text

Which of these reviews am I most likely

to agree with or find helpful?

Prediction tasks involving text

Which of these sentences best

summarizes people’s opinions?

Prediction tasks involving text

‘Partridge in a Pear Tree’, brewed by ‘The Bruery’

Dark brown with a light tan head, minimal lace and low

retention. Excellent aroma of dark fruit, plum, raisin and

red grape with light vanilla, oak, caramel and toffee.

Medium thick body with low carbonation. Flavor has

strong brown sugar and molasses from the start over

bready yeast and a dark fruit and plum finish. Minimal

alcohol presence. Actually, this is a nice quad.

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

Which sentences refer to which aspect

of the product?

Today

Using text to solve predictive tasks
• How to represent documents using features?

• Is text structured or unstructured?

• Does structure actually help us?

• How to account for the fact that most words may not

convey much information?

• How can we find low-dimensional structure in text?

CSE 158 – Lecture 9
Web Mining and Recommender Systems

Bag-of-words models

Feature vectors from text

We’d like a fixed-dimensional

representation of documents, i.e., we’d like

to describe them using feature vectors

This will allow us to compare documents,

and associate weights with particular

features to solve predictive tasks etc. (i.e.,

the kind of things we’ve been doing every

week)

Feature vectors from text

F_text = [150, 0, 0, 0, 0, 0, … , 0]

Option 1: just count how many times

each word appears in each document

Feature vectors from text

Option 1: just count how many times

each word appears in each document

Dark brown with a light tan head, minimal

lace and low retention. Excellent aroma of

dark fruit, plum, raisin and red grape with

light vanilla, oak, caramel and toffee. Medium

thick body with low carbonation. Flavor has

strong brown sugar and molasses from the

start over bready yeast and a dark fruit and

plum finish. Minimal alcohol presence.

Actually, this is a nice quad.

yeast and minimal red body thick light a

Flavor sugar strong quad. grape over is

molasses lace the low and caramel fruit

Minimal start and toffee. dark plum, dark

brown Actually, alcohol Dark oak, nice vanilla,

has brown of a with presence. light

carbonation. bready from retention. with

finish. with and this and plum and head, fruit,

low a Excellent raisin aroma Medium tan

These two documents have exactly the same representation

in this model, i.e., we’re completely ignoring syntax.

This is called a “bag-of-words” model.

Feature vectors from text

Option 1: just count how many times

each word appears in each document

We’ve already seen some (potential)

problems with this type of representation

in week 3 (dimensionality reduction), but

let’s see what we can do to get it working

Feature vectors from text

50,000 reviews are available on :

http://jmcauley.ucsd.edu/cse158/data/beer/beer_50000.json

(see course webpage, from week 1)

Code on:

http://jmcauley.ucsd.edu/cse158/code/week5.py

http://jmcauley.ucsd.edu/cse158/data/beer/beer_50000.json
http://jmcauley.ucsd.edu/cse158/code/week5.py

Feature vectors from text

Q1: How many words are there?

wordCount = defaultdict(int)

for d in data:

for w in d[‘review/text’].split():

wordCount[w] += 1

print len(wordCount)

Feature vectors from text

2: What if we remove

capitalization/punctuation?

wordCount = defaultdict(int)

punctuation = set(string.punctuation)

for d in data:

for w in d['review/text'].split():

w = ''.join([c for c in w.lower() if not c in punctuation])

wordCount[w] += 1

print len(wordCount)

Feature vectors from text

3: What if we merge different

inflections of words?

drinks drink

drinking drink

drinker drink

argue argu

arguing argu

argues argu

arguing argu

argus argu

drinks drink

drinking drink

drinker drink

argue argu

arguing argu

argues argu

arguing argu

argus argu

Feature vectors from text

3: What if we merge different

inflections of words?

This process is called “stemming”

• The first stemmer was created by

Julie Beth Lovins (in 1968!!)

• The most popular stemmer was

created by Martin Porter in 1980

Feature vectors from text

3: What if we merge different

inflections of words?
The algorithm is (fairly) simple but

depends on a huge number of rules

http://telemat.det.unifi.it/book/2001/wchange/download/stem_porter.html

Feature vectors from text

3: What if we merge different

inflections of words?
wordCount = defaultdict(int)

punctuation = set(string.punctuation)

stemmer = nltk.stem.porter.PorterStemmer()

for d in data:

for w in d['review/text'].split():

w = ''.join([c for c in w.lower() if not c in punctuation])

w = stemmer.stem(w)

wordCount[w] += 1

print len(wordCount)

Feature vectors from text

3: What if we merge different

inflections of words?

• Stemming is critical for retrieval-type applications

(e.g. we want Google to return pages with the word

“cat” when we search for “cats”)

• Personally I tend not to use it for predictive tasks.

Words like “waste” and “wasted” may have different

meanings (in beer reviews), and we’re throwing that

away by stemming

Feature vectors from text

4: Just discard extremely rare words…

counts = [(wordCount[w], w) for w in wordCount]

counts.sort()

counts.reverse()

words = [x[1] for x in counts[:1000]]

• Pretty unsatisfying but at least we

can get to some inference now!

Feature vectors from text

Let’s do some inference!

Problem 1: Sentiment analysis

Let’s build a predictor of the form:

using a model based on linear regression:

Code: http://jmcauley.ucsd.edu/cse158/code/week5.py

http://jmcauley.ucsd.edu/cse158/code/week5.py

Feature vectors from text

What do the parameters look like?

Feature vectors from text

Why might parameters associated with

“and”, “of”, etc. have non-zero values?

• Maybe they have meaning, in that they might frequently

appear slightly more often in positive/negative phrases

• Or maybe we’re just measuring the length of the review…

How to fix this (and is it a problem)?

1) Add the length of the review to our feature vector

2) Remove stopwords

Feature vectors from text

Removing stopwords:

from nltk.corpus import stopwords

stopwords.words(“english”)

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',

'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself',

'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them',

'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this',

'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been',

'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing',

'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until',

'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between',

'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to',

'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again',

'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why',

'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other',

'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than',

'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now']

Feature vectors from text

Why remove stopwords?

some (potentially inconsistent) reasons:

• They convey little information, but are a substantial fraction of

the corpus, so we can reduce our corpus size by ignoring them

• They do convey information, but only by being correlated by a

feature that we don’t want in our model

• They make it more difficult to reason about which features are

informative (e.g. they might make a model harder to visualize)

• We’re confounding their importance with that of phrases they

appear in (e.g. words like “The Matrix”, “The Dark Night”, “The

Hobbit” might predict that an article is about movies)

so use n-grams!

Feature vectors from text

We can build a richer

predictor by using n-grams

e.g. “Medium thick body with low carbonation.“

unigrams: [“medium”, “thick”, “body”, “with”, “low”, “carbonation”]

bigrams: [“medium thick”, “thick body”, “body with”, “with low”, “low

carbonation”]

trigrams: [“medium thick body”, “thick body with”, “body with low”,

“with low carbonation”]

etc.

Feature vectors from text

• Fixes some of the issues associated with using a bag-of-

words model – namely we recover some basic syntax – e.g.

“good” and “not good” will have different weights

associated with them in a sentiment model

• Increases the dictionary size by a lot, and increases the

sparsity in the dictionary even further

• We might end up double (or triple-)-counting some features

(e.g. we’ll predict that “Adam Sandler”, “Adam”, and

“Sandler” are associated with negative ratings, even though

they’re all referring to the same concept)

We can build a richer

predictor by using n-grams

Feature vectors from text

• This last problem (that of double counting) is bigger than it

seems: We’re massively increasing the number of features,

but possibly increasing the number of informative features

only slightly

• So, for a fixed-length representation (e.g. 1000 most-

common words vs. 1000 most-common words+bigrams) the

bigram model will quite possibly perform worse than the

unigram model

We can build a richer

predictor by using n-grams

(homework exercise?)

Feature vectors from text

Other prediction tasks:

Problem 2: Multiclass classification

Let’s build a predictor of the form:

(or even f(text) {1 star, 2 star, 3 star, 4 star, 5 star})

using a probabilistic classifier:

Feature vectors from text

Recall: multinomial distributions

Want:

When there were two classes, we used a sigmoid function to

ensure that probabilities would sum to 1:

Feature vectors from text

Recall: multinomial distributions

With many classes, we can use the same idea, by

exponentiating linear predictors and normalizing:

Each class has its own set of parameters

We can optimize this model exactly as we did for logistic

regression, i.e., by computing the (log) likelihood and fitting

parameters to maximize it

Feature vectors from text

How to apply this to text classification?

Background probability of this class

Score associated with the word w appearing in the class c

Feature vectors from text

is now a “descriptor” of each

category, with high weights for words that

are likely to appear in the category

high weights:

low weights:

So far…

Bags-of-words representations of text

• Stemming & stopwords

• Unigrams & N-grams

• Sentiment analysis & text classification

Questions?

Further reading:
• Original stemming paper

“Development of a stemming algorithm” (Lovins, 1968):

http://mt-archive.info/MT-1968-Lovins.pdf

• Porter’s paper on stemming
“An algorithm for suffix stripping” (Porter, 1980):

http://telemat.det.unifi.it/book/2001/wchange/download/stem_porter.html

http://mt-archive.info/MT-1968-Lovins.pdf
http://telemat.det.unifi.it/book/2001/wchange/download/stem_porter.html

CSE 158 – Lecture 9
Web Mining and Recommender Systems

Case study: inferring aspects from

multi-dimensional reviews

A (very quick) case study

‘Partridge in a Pear Tree’, brewed by ‘The Bruery’

Dark brown with a light tan head, minimal lace and low retention.

Excellent aroma of dark fruit, plum, raisin and red grape with light

vanilla, oak, caramel and toffee. Medium thick body with low

carbonation. Flavor has strong brown sugar and molasses from the

start over bready yeast and a dark fruit and plum finish. Minimal

alcohol presence. Actually, this is a nice quad.

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

How can we estimate which words in a

review refer to which sensory aspects?

Aspects of opinions

Wikipedia pages:
Cigars:

Beers:
Hotels:Audiobooks:

There are lots of settings in which people’s opinions

cover many dimensions:

Aspects of opinions

Further reading on this problem:
• Brody & Elhadad

“An unsupervised aspect-sentiment model for online reviews”

• Gupta, Di Fabbrizio, & Haffner

“Capturing the stars: predicting ratings for service and product reviews”

• Ganu, Elhadad, & Marian

“Beyond the stars: Improving rating predictions using review text content”

• Lu, Ott, Cardie, & Tsou

“Multi-aspect sentiment analysis with topic models”

• Rao & Ravichandran

“Semi-supervised polarity lexicon induction”

• Titov & McDonald

“A joint model of text and aspect ratings for sentiment summarization”

Aspects of opinions

If we can uncover these

dimensions, we might be able to:
• Build sentiment models for each of the

different aspects

• Summarize opinions according to each of the

sensory aspects

• Predict the multiple dimensions of ratings

from the text alone

• But also: understand the types of positive

and negative language that people use

(and several thousand

more reviews like this)

Aspects of opinions

Task: given (multidimensional) ratings and plain-text

reviews, predict which sentences in the review refer to

which aspect

‘Partridge in a Pear Tree’, brewed by ‘The

Bruery’

Dark brown with a light tan head, minimal

lace and low retention. Excellent aroma of

dark fruit, plum, raisin and red grape with

light vanilla, oak, caramel and toffee.

Medium thick body with low carbonation.

Flavor has strong brown sugar and molasses

from the start over bready yeast and a dark

fruit and plum finish. Minimal alcohol

presence. Actually, this is a nice quad.

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

‘Partridge in a Pear Tree’, brewed by ‘The

Bruery’

Dark brown with a light tan head, minimal

lace and low retention. Excellent aroma of

dark fruit, plum, raisin and red grape with

light vanilla, oak, caramel and toffee.

Medium thick body with low carbonation.

Flavor has strong brown sugar and molasses

from the start over bready yeast and a dark

fruit and plum finish. Minimal alcohol

presence. Actually, this is a nice quad.

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

Input: Output:

Aspects of opinions

Solving this problem depends on

solving the following two sub-problems:

1. Labeling the sentences is easy if we have a good model

of the words used to describe each aspect

2. Building a model of the different aspects is easy if we

have labels for each sentence

• Challenge: each of these subproblems depends on

having a good solution to the other one

• So (as usual) start the model somewhere and alternately

solve the subproblems until convergence

Aspects of opinions

Model:

normalization

over all aspects
Sum over words

in the sentence

Weight for a word

(w) appearing in a

particular aspect (k)

Weight for a word

(w) appearing in a

particular aspect

(k), when the rating

is v_k

Aspects of opinions

Intuition:

Nouns should have high

weights, since they describe

an aspect but are

independent of the sentiment

Adjectives should

have high weights,

since they describe

specific sentiments

Aspects of opinions

Procedure:

1. Given the current model (theta and phi), choose

the most likely aspect labels for each sentence

2. Given the current aspect labels, estimate the

parameters theta and phi (convex problem)

3. Iterate until convergence (i.e., until aspect labels don’t change)

Aspects of opinions

Evaluation:
In order to tell if this is working, we need to get some

humans to label some sentences

• I labeled 100 sentences for validation, and sent

10,000 sentences to Amazon’s “mechanical turk”

• These were next-to-useless

• So we hired some “experts” to label beer sentences

me turkers
30% agreement

oDesk “beer experts”

30%90%

Aspects of opinions

Evaluation:

• 70-80% accurate at labeling beer sentences

(somewhat less accurate for other review datasets)

• A few other tasks too, e.g. summarization (selecting

sentences that describe different opinions on a particular

aspect), and missing rating completion

Aspects of opinions

Feel

Look

Smell

Taste

Overall

impression

Aspect words Sentiment words

(2-star)
Sentiment words

(5-star)

Aspects of opinions

Moral of the story:
• We can obtain fairly accurate results just

using a bag-of-words approach

• People use very different language if the

have positive vs. negative opinions

• In particular, people don’t just take positive

language and negate it, so modeling syntax

(presumably?) wouldn’t help that much

Aspects of opinions

Not today…

See Michael Collins & Regina Barzilay’s NLP mooc if you’re interested:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-

natural-language-processing-fall-2005/index.htm

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/index.htm

Questions?

Further reading:
• Latent Dirichlet Allocation:

http://machinelearning.wustl.edu/mlpapers/paper_files/BleiNJ03.pdf

• Linguistics of food
“The language of Food: A Linguist Reads the Menu”

http://www.amazon.com/The-Language-Food-Linguist-Reads/dp/0393240835

http://machinelearning.wustl.edu/mlpapers/paper_files/BleiNJ03.pdf
http://www.amazon.com/The-Language-Food-Linguist-Reads/dp/0393240835

