
CSE 158 – Lecture 8
Web Mining and Recommender Systems

Extensions of latent-factor models,

(and more on the Netflix prize)

Summary so far

Recap

1. Measuring similarity between users/items for

binary prediction

Jaccard similarity

2. Measuring similarity between users/items for real-

valued prediction

cosine/Pearson similarity

3. Dimensionality reduction for real-valued prediction

latent-factor models

Last lecture…

In 2006, Netflix created a dataset of 100,000,000 movie ratings

Data looked like:

The goal was to reduce the (R)MSE at predicting ratings:

Whoever first manages to reduce the RMSE by 10% versus

Netflix’s solution wins $1,000,000

model’s prediction ground-truth

Last lecture…

Let’s start with the

simplest possible model:

user item

Last lecture…

What about the 2nd simplest model?

user item

how much does

this user tend to

rate things above

the mean?

does this item tend

to receive higher

ratings than others

e.g.

Rating prediction

The optimization problem becomes:

error regularizer

Rating prediction

The optimization problem becomes:

error regularizer

Rating prediction

Iterative procedure – repeat the

following updates until convergence:

(exercise: write down derivatives and convince yourself of

these update equations!)

Rating prediction

user predictor movie predictor

Looks good (and actually works

surprisingly well), but doesn’t solve the

basic issue that we started with

That is, we’re still fitting a function that

treats users and items independently

Recommending things to people

How about an approach based on

dimensionality reduction?

my (user’s)

“preferences”
HP’s (item)

“properties”

i.e., let’s come up with low-dimensional representations of the

users and the items so as to best explain the data

Dimensionality reduction

We already have some tools that ought to

help us, e.g. from week 3:

What is the best low-

rank approximation of

R in terms of the mean-

squared error?

Dimensionality reduction

We already have some tools that ought to

help us, e.g. from week 3:

eigenvectors of

eigenvectors of

(square roots of)

eigenvalues of

Singular Value

Decomposition

The “best” rank-K approximation (in terms of the MSE) consists

of taking the eigenvectors with the highest eigenvalues

Dimensionality reduction

But! Our matrix of ratings is only partially

observed; and it’s really big!

Missing ratings

SVD is not defined for partially observed matrices, and it is not

practical for matrices with 1Mx1M+ dimensions

; and it’s really big!

Latent-factor models

Instead, let’s solve approximately using

gradient descent

items

users

K-dimensional

representation

of each user

K-dimensional

representation

of each item

Latent-factor models

my (user’s)

“preferences”
HP’s (item)

“properties”

Let’s write this as:

Latent-factor models

Let’s write this as:

Our optimization problem is then

error regularizer

Latent-factor models

Problem: this is certainly not convex

Latent-factor models

Oh well. We’ll just solve it

approximately

Observation: if we know either the user

or the item parameters, the problem

becomes easy

e.g. fix gamma_i – pretend we’re fitting parameters for features

Latent-factor models

Latent-factor models

This gives rise to a simple (though

approximate) solution

1) fix . Solve

2) fix . Solve

3,4,5…) repeat until convergence

objective:

Each of these subproblems is “easy” – just regularized

least-squares, like we’ve been doing since week 1. This

procedure is called alternating least squares.

Latent-factor models

Movie features: genre,

actors, rating, length, etc.

User features:

age, gender,

location, etc.

Observation: we went from a method

which uses only features:

to one which completely ignores them:

Overview & recap

So far we’ve followed the

programme below:

1. Measuring similarity between users/items for

binary prediction (e.g. Jaccard similarity)

2. Measuring similarity between users/items for real-

valued prediction (e.g. cosine/Pearson similarity)

3. Dimensionality reduction for real-valued

prediction (latent-factor models)

4. Finally – dimensionality reduction for binary

prediction

One-class recommendation

How can we use dimensionality

reduction to predict binary

outcomes?

• In weeks 1&2 we saw regression and logistic

regression. These two approaches use the same

type of linear function to predict real-valued and

binary outputs

• We can apply an analogous approach to binary

recommendation tasks

One-class recommendation

This is referred to as “one-class”

recommendation

• In weeks 1&2 we saw regression and logistic

regression. These two approaches use the same

type of linear function to predict real-valued and

binary outputs

• We can apply an analogous approach to binary

recommendation tasks

One-class recommendation

Suppose we have binary (0/1) observations

(e.g. purchases) or positive/negative

feedback (thumbs-up/down)

or

purchased didn’t purchase liked didn’t evaluate didn’t like

One-class recommendation

So far, we’ve been fitting functions of the

form

• Let’s change this so that we maximize the difference in

predictions between positive and negative items

• E.g. for a user who likes an item i and dislikes an item j we

want to maximize:

One-class recommendation

We can think of this as maximizing the

probability of correctly predicting pairwise

preferences, i.e.,

• As with logistic regression, we can now maximize the

likelihood associated with such a model by gradient ascent

• In practice it isn’t feasible to consider all pairs of

positive/negative items, so we proceed by stochastic gradient

ascent – i.e., randomly sample a (positive, negative) pair and

update the model according to the gradient w.r.t. that pair

One-class recommendation

Summary

Recap

1. Measuring similarity between users/items for

binary prediction

Jaccard similarity

2. Measuring similarity between users/items for real-

valued prediction

cosine/Pearson similarity

3. Dimensionality reduction for real-valued prediction

latent-factor models

4. Dimensionality reduction for binary prediction

one-class recommender systems

Questions?

Further reading:
One-class recommendation:

http://goo.gl/08Rh59

Amazon’s solution to collaborative filtering at scale:

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
An (expensive) textbook about recommender systems:

http://www.springer.com/computer/ai/book/978-0-387-85819-7

Cold-start recommendation (e.g.):

http://wanlab.poly.edu/recsys12/recsys/p115.pdf

http://goo.gl/08Rh59
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.springer.com/computer/ai/book/978-0-387-85819-7
http://wanlab.poly.edu/recsys12/recsys/p115.pdf

CSE 158 – Lecture 8
Web Mining and Recommender Systems

Extensions of latent-factor models,

(and more on the Netflix prize!)

Extensions of latent-factor models

So far we have a model that looks like:

How might we extend this to:
• Incorporate features about users and items

• Handle implicit feedback

• Change over time

See Yehuda Koren (+Bell & Volinsky)’s magazine article:

“Matrix Factorization Techniques for Recommender Systems”

IEEE Computer, 2009

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to

describe users or items

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g. is female is male is between 18-24yo

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to

describe users or items

• Associate a parameter vector with each attribute

• Each vector encodes how much a particular feature

“offsets” the given latent dimensions

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g. y_0 = [-0.2,0.3,0.1,-0.4,0.8]

~ “how does being male impact gamma_u”

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to

describe users or items

• Associate a parameter vector with each attribute

• Each vector encodes how much a particular feature

“offsets” the given latent dimensions

• Model looks like:

• Fit as usual:

error regularizer

Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may

still interact with the system, e.g. through the movies they

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector

describing a user’s actions

N(u) = [1,0,0,0,1,0,….,0,1]

implicit feedback vector for user u

e.g. y_0 = [-0.1,0.2,0.3,-0.1,0.5]

Clicked on “Love Actually” but didn’t watch

Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may

still interact with the system, e.g. through the movies they

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector

describing a user’s actions

• Model looks like:

normalize by the number of actions the user performed

Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be

subject to temporal effects…

Extensions of latent-factor models

3) Change over time

Netflix ratings

over time

early 2004

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Netflix changed

their interface!

Extensions of latent-factor models

3) Change over time

Netflix ratings by

movie age

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

People tend to give higher

ratings to older movies

Extensions of latent-factor models

3) Change over time

A few temporal effects from beer reviews

Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be

subject to temporal effects…

e.g. “Collaborative filtering

with temporal dynamics”

Koren, 2009

• Changes in the interface

• People give higher ratings to older movies (or, people

who watch older movies are a biased sample)

• The community’s preferences gradually change over time

• My girlfriend starts using my Netflix account one day

• I binge watch all 144 episodes of buffy one week and

then revert to my normal behavior

• I become a “connoisseur” of a certain type of movie

• Anchoring, public perception, seasonal effects, etc.

e.g. “Sequential & temporal

dynamics of online opinion”

Godes & Silva, 2012

e.g. “Temporal

recommendation on graphs

via long- and short-term

preference fusion”

Xiang et al., 2010

e.g. “Modeling the evolution

of user expertise through

online reviews”

McAuley & Leskovec, 2013

Extensions of latent-factor models

3) Change over time

Each definition of temporal evolution demands a slightly

different model assumption (we’ll see some in more detail

later tonight!) but the basic idea is the following:

1) Start with our original model:

2) And define some of the parameters as a function of time:

3) Add a regularizer to constrain the time-varying terms:

parameters should change smoothly

Extensions of latent-factor models

3) Change over time

Case study: how do people acquire tastes for beers (and

potentially for other things) over time?

Differences between

“beginner” and “expert”

preferences for different

beer styles

Extensions of latent-factor models

4) Missing-not-at-random

• Our decision about whether to purchase a movie (or

item etc.) is a function of how we expect to rate it

• Even for items we’ve purchased, our decision to enter a

rating or write a review is a function of our rating

• e.g. some rating distribution from a few datasets:

EachMovie MovieLens Netflix

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)

Extensions of latent-factor models

4) Missing-not-at-random

e.g. Men’s watches:

Extensions of latent-factor models

4) Missing-not-at-random

• Our decision about whether to purchase a movie (or

item etc.) is a function of how we expect to rate it

• Even for items we’ve purchased, our decision to enter a

rating or write a review is a function of our rating

• So we can predict ratings more accurately by building

models that account for these differences

1. Not-purchased items have a different prior on ratings

than purchased ones

2. Purchased-but-not-rated items have a different prior on

ratings than rated ones

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)

Moral(s) of the story

How much do these extension help?

bias terms

implicit feedback

temporal dynamics

Moral: increasing

complexity helps a

bit, but changing

the model can

help a lot

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Moral(s) of the story

So what actually happened with Netflix?

• The AT&T team “BellKor”, consisting of Yehuda Koren, Robert Bell, and Chris

Volinsky were early leaders. Their main insight was how to effectively

incorporate temporal dynamics into recommendation on Netflix.

• Before long, it was clear that no one team would build the winning solution,

and Frankenstein efforts started to merge. Two frontrunners emerged, “BellKor’s

Pragmatic Chaos”, and “The Ensemble”.

• The BellKor team was the first to achieve a 10% improvement in RMSE, putting

the competition in “last call” mode. The winner would be decided after 30 days.

• After 30 days, performance was evaluated on the hidden part of the test set.

• Both of the frontrunning teams had the same RMSE (up to some precision) but

BellKor’s team submitted their solution 20 minutes earlier and won $1,000,000

For a less rough summary, see the Wikipedia page about the Netflix prize,

and the nytimes article about the competition: http://goo.gl/WNpy7o

http://goo.gl/WNpy7o

Moral(s) of the story

Afterword

• Netflix had a class-action lawsuit filed against them after somebody de-

anonymized the competition data

• $1,000,000 seems to be incredibly cheap for a company the size of Netflix in

terms of the amount of research that was devoted to the task, and the potential

benefit to Netflix of having their recommendation algorithm improved by 10%

• Other similar competitions have emerged, such as the Heritage Health Prize

($3,000,000 to predict the length of future hospital visits)

• But… the winning solution never made it into production at Netflix – it’s a

monolithic algorithm that is very expensive to update as new data comes in*

*source: a friend of mine told me and I have no actual evidence of this claim

Moral(s) of the story

Finally…

Q: Is the RMSE really the right approach? Will improving rating prediction by 10%

actually improve the user experience by a significant amount?

A: Not clear. Even a solution that only changes the RMSE slightly could drastically

change which items are top-ranked and ultimately suggested to the user.

Q: But… are the following recommendations actually any good?

A1: Yes, these are my favorite movies!

or A2: No! There’s no diversity, so how will I discover new content?

5.0 stars 5.0 stars 5.0 stars 5.0 stars 4.9 stars 4.9 stars 4.8 stars 4.8 stars

predicted rating

Summary

Various extensions of latent factor models:
• Incorporating features

e.g. for cold-start recommendation

• Implicit feedback

e.g. when ratings aren’t available, but other actions are

• Incorporating temporal information into latent factor models

seasonal effects, short-term “bursts”, long-term trends, etc.

• Missing-not-at-random

incorporating priors about items that were not bought or rated

• The Netflix prize

Things I didn’t get to…

Socially regularized recommender

systems
see e.g. “Recommender Systems with Social Regularization”
http://research.microsoft.com/en-us/um/people/denzho/papers/rsr.pdf

social regularizer

network

http://research.microsoft.com/en-us/um/people/denzho/papers/rsr.pdf

Questions?

Further reading:
Yehuda Koren’s, Robert Bell, and Chris Volinsky’s IEEE computer article:

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf

Paper about the “Missing-at-Random” assumption, and how to address it:

http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf

Collaborative filtering with temporal dynamics:

http://research.yahoo.com/files/kdd-fp074-koren.pdf

Recommender systems and sales diversity:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
http://research.yahoo.com/files/kdd-fp074-koren.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

