
CSE 158 – Lecture 8
Web Mining and Recommender Systems

Extensions of latent-factor models, 

(and more on the Netflix prize)



Summary so far

Recap

1. Measuring similarity between users/items for 

binary prediction

Jaccard similarity

2. Measuring similarity between users/items for real-

valued prediction 

cosine/Pearson similarity

3. Dimensionality reduction for real-valued prediction 

latent-factor models



Last lecture…

In 2006, Netflix created a dataset of 100,000,000 movie ratings

Data looked like:

The goal was to reduce the (R)MSE at predicting ratings:

Whoever first manages to reduce the RMSE by 10% versus 

Netflix’s solution wins $1,000,000

model’s prediction ground-truth



Last lecture…

Let’s start with the 

simplest possible model:

user item



Last lecture…

What about the 2nd simplest model?

user item

how much does 

this user tend to 

rate things above 

the mean?

does this item tend 

to receive higher 

ratings than others

e.g.



Rating prediction

The optimization problem becomes:

error regularizer



Rating prediction

The optimization problem becomes:

error regularizer



Rating prediction

Iterative procedure – repeat the 

following updates until convergence:

(exercise: write down derivatives and convince yourself of 

these update equations!)



Rating prediction

user predictor movie predictor

Looks good (and actually works 

surprisingly well), but doesn’t solve the 

basic issue that we started with

That is, we’re still fitting a function that 

treats users and items independently



Recommending things to people

How about an approach based on 

dimensionality reduction?

my (user’s)

“preferences”
HP’s (item) 

“properties”

i.e., let’s come up with low-dimensional representations of the 

users and the items so as to best explain the data



Dimensionality reduction

We already have some tools that ought to 

help us, e.g. from week 3:

What is the best low-

rank approximation of 

R in terms of the mean-

squared error?



Dimensionality reduction

We already have some tools that ought to 

help us, e.g. from week 3:

eigenvectors of

eigenvectors of

(square roots of)

eigenvalues of

Singular Value 

Decomposition

The “best” rank-K approximation (in terms of the MSE) consists 

of taking the eigenvectors with the highest eigenvalues



Dimensionality reduction

But! Our matrix of ratings is only partially 

observed; and it’s really big!

Missing ratings

SVD is not defined for partially observed matrices, and it is not 

practical for matrices with 1Mx1M+ dimensions

; and it’s really big!



Latent-factor models

Instead, let’s solve approximately using 

gradient descent

items

users

K-dimensional 

representation 

of each user

K-dimensional 

representation 

of each item



Latent-factor models

my (user’s)

“preferences”
HP’s (item) 

“properties”

Let’s write this as:



Latent-factor models

Let’s write this as:

Our optimization problem is then

error regularizer



Latent-factor models

Problem: this is certainly not convex



Latent-factor models

Oh well. We’ll just solve it 

approximately

Observation: if we know either the user 

or the item parameters, the problem 

becomes easy

e.g. fix gamma_i – pretend we’re fitting parameters for features



Latent-factor models



Latent-factor models

This gives rise to a simple (though 

approximate) solution

1) fix    . Solve 

2) fix    . Solve

3,4,5…) repeat until convergence

objective:

Each of these subproblems is “easy” – just regularized 

least-squares, like we’ve been doing since week 1. This 

procedure is called alternating least squares.



Latent-factor models

Movie features: genre, 

actors, rating, length, etc.

User features: 

age, gender, 

location, etc.

Observation: we went from a method 

which uses only features:

to one which completely ignores them:



Overview & recap

So far we’ve followed the 

programme below:

1. Measuring similarity between users/items for 

binary prediction (e.g. Jaccard similarity)

2. Measuring similarity between users/items for real-

valued prediction (e.g. cosine/Pearson similarity)

3. Dimensionality reduction for real-valued

prediction (latent-factor models)

4. Finally – dimensionality reduction for binary 

prediction



One-class recommendation

How can we use dimensionality 

reduction to predict binary

outcomes?

• In weeks 1&2 we saw regression and logistic

regression. These two approaches use the same 

type of linear function to predict real-valued and 

binary outputs

• We can apply an analogous approach to binary 

recommendation tasks



One-class recommendation

This is referred to as “one-class”

recommendation

• In weeks 1&2 we saw regression and logistic

regression. These two approaches use the same 

type of linear function to predict real-valued and 

binary outputs

• We can apply an analogous approach to binary 

recommendation tasks



One-class recommendation

Suppose we have binary (0/1) observations 

(e.g. purchases) or positive/negative 

feedback (thumbs-up/down)

or

purchased didn’t purchase liked didn’t evaluate didn’t like



One-class recommendation

So far, we’ve been fitting functions of the 

form

• Let’s change this so that we maximize the difference in 

predictions between positive and negative items

• E.g. for a user who likes an item i and dislikes an item j we 

want to maximize:



One-class recommendation

We can think of this as maximizing the 

probability of correctly predicting pairwise 

preferences, i.e.,

• As with logistic regression, we can now maximize the 

likelihood associated with such a model by gradient ascent

• In practice it isn’t feasible to consider all pairs of 

positive/negative items, so we proceed by stochastic gradient 

ascent – i.e., randomly sample a (positive, negative) pair and 

update the model according to the gradient w.r.t. that pair



One-class recommendation



Summary

Recap

1. Measuring similarity between users/items for 

binary prediction

Jaccard similarity

2. Measuring similarity between users/items for real-

valued prediction 

cosine/Pearson similarity

3. Dimensionality reduction for real-valued prediction 

latent-factor models

4. Dimensionality reduction for binary prediction

one-class recommender systems



Questions?

Further reading:
One-class recommendation:

http://goo.gl/08Rh59

Amazon’s solution to collaborative filtering at scale:

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
An (expensive) textbook about recommender systems:

http://www.springer.com/computer/ai/book/978-0-387-85819-7

Cold-start recommendation (e.g.):

http://wanlab.poly.edu/recsys12/recsys/p115.pdf

http://goo.gl/08Rh59
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.springer.com/computer/ai/book/978-0-387-85819-7
http://wanlab.poly.edu/recsys12/recsys/p115.pdf


CSE 158 – Lecture 8
Web Mining and Recommender Systems

Extensions of latent-factor models, 

(and more on the Netflix prize!)



Extensions of latent-factor models

So far we have a model that looks like:

How might we extend this to:
• Incorporate features about users and items

• Handle implicit feedback

• Change over time

See Yehuda Koren (+Bell & Volinsky)’s magazine article:

“Matrix Factorization Techniques for Recommender Systems”

IEEE Computer, 2009



Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to 

describe users or items

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g. is female is male is between 18-24yo



Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to 

describe users or items

• Associate a parameter vector with each attribute

• Each vector encodes how much a particular feature 

“offsets” the given latent dimensions

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g. y_0 = [-0.2,0.3,0.1,-0.4,0.8]

~ “how does being male impact gamma_u”



Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to 

describe users or items

• Associate a parameter vector with each attribute

• Each vector encodes how much a particular feature 

“offsets” the given latent dimensions

• Model looks like:

• Fit as usual:

error regularizer



Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may 

still interact with the system, e.g. through the movies they 

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector 

describing a user’s actions

N(u) = [1,0,0,0,1,0,….,0,1]

implicit feedback vector for user u

e.g. y_0 = [-0.1,0.2,0.3,-0.1,0.5]

Clicked on “Love Actually” but didn’t watch



Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may 

still interact with the system, e.g. through the movies they 

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector 

describing a user’s actions

• Model looks like:

normalize by the number of actions the user performed



Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be 

subject to temporal effects…



Extensions of latent-factor models

3) Change over time

Netflix ratings 

over time

early 2004

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Netflix changed 

their interface!



Extensions of latent-factor models

3) Change over time

Netflix ratings by 

movie age

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

People tend to give higher 

ratings to older movies



Extensions of latent-factor models

3) Change over time

A few temporal effects from beer reviews



Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be 

subject to temporal effects…

e.g. “Collaborative filtering 

with temporal dynamics”

Koren, 2009

• Changes in the interface

• People give higher ratings to older movies (or, people 

who watch older movies are a biased sample)

• The community’s preferences gradually change over time

• My girlfriend starts using my Netflix account one day

• I binge watch all 144 episodes of buffy one week and 

then revert to my normal behavior

• I become a “connoisseur” of a certain type of movie

• Anchoring, public perception, seasonal effects, etc.

e.g. “Sequential & temporal 

dynamics of online opinion”

Godes & Silva, 2012

e.g. “Temporal 

recommendation on graphs 

via long- and short-term 

preference fusion”

Xiang et al., 2010

e.g. “Modeling the evolution 

of user expertise through 

online reviews”

McAuley & Leskovec, 2013



Extensions of latent-factor models

3) Change over time

Each definition of temporal evolution demands a slightly 

different model assumption (we’ll see some in more detail 

later tonight!) but the basic idea is the following:

1) Start with our original model:

2) And define some of the parameters as a function of time:

3) Add a regularizer to constrain the time-varying terms:

parameters should change smoothly



Extensions of latent-factor models

3) Change over time

Case study: how do people acquire tastes for beers (and 

potentially for other things) over time?

Differences between 

“beginner” and “expert” 

preferences for different 

beer styles



Extensions of latent-factor models

4) Missing-not-at-random

• Our decision about whether to purchase a movie (or 

item etc.) is a function of how we expect to rate it

• Even for items we’ve purchased, our decision to enter a 

rating or write a review is a function of our rating

• e.g. some rating distribution from a few datasets:

EachMovie MovieLens Netflix

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)



Extensions of latent-factor models

4) Missing-not-at-random

e.g. Men’s watches:



Extensions of latent-factor models

4) Missing-not-at-random

• Our decision about whether to purchase a movie (or 

item etc.) is a function of how we expect to rate it

• Even for items we’ve purchased, our decision to enter a 

rating or write a review is a function of our rating

• So we can predict ratings more accurately by building 

models that account for these differences

1. Not-purchased items have a different prior on ratings 

than purchased ones

2. Purchased-but-not-rated items have a different prior on 

ratings than rated ones

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)



Moral(s) of the story

How much do these extension help?

bias terms

implicit feedback

temporal dynamics

Moral: increasing 

complexity helps a 

bit, but changing 

the model can 

help a lot

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)



Moral(s) of the story

So what actually happened with Netflix?

• The AT&T team “BellKor”, consisting of Yehuda Koren, Robert Bell, and Chris 

Volinsky were early leaders. Their main insight was how to effectively 

incorporate temporal dynamics into recommendation on Netflix.

• Before long, it was clear that no one team would build the winning solution, 

and Frankenstein efforts started to merge. Two frontrunners emerged, “BellKor’s

Pragmatic Chaos”, and “The Ensemble”.

• The BellKor team was the first to achieve a 10% improvement in RMSE, putting 

the competition in “last call” mode. The winner would be decided after 30 days.

• After 30 days, performance was evaluated on the hidden part of the test set.

• Both of the frontrunning teams had the same RMSE (up to some precision) but 

BellKor’s team submitted their solution 20 minutes earlier and won $1,000,000

For a less rough summary, see the Wikipedia page about the Netflix prize, 

and the nytimes article about the competition: http://goo.gl/WNpy7o

http://goo.gl/WNpy7o


Moral(s) of the story

Afterword

• Netflix had a class-action lawsuit filed against them after somebody de-

anonymized the competition data

• $1,000,000 seems to be incredibly cheap for a company the size of Netflix in 

terms of the amount of research that was devoted to the task, and the potential 

benefit to Netflix of having their recommendation algorithm improved by 10%

• Other similar competitions have emerged, such as the Heritage Health Prize 

($3,000,000 to predict the length of future hospital visits)

• But… the winning solution never made it into production at Netflix – it’s a 

monolithic algorithm that is very expensive to update as new data comes in*

*source: a friend of mine told me and I have no actual evidence of this claim



Moral(s) of the story

Finally…

Q: Is the RMSE really the right approach? Will improving rating prediction by 10% 

actually improve the user experience by a significant amount?

A: Not clear. Even a solution that only changes the RMSE slightly could drastically 

change which items are top-ranked and ultimately suggested to the user.

Q: But… are the following recommendations actually any good?

A1: Yes, these are my favorite movies!

or A2: No! There’s no diversity, so how will I discover new content?

5.0 stars 5.0 stars 5.0 stars 5.0 stars 4.9 stars 4.9 stars 4.8 stars 4.8 stars

predicted rating



Summary

Various extensions of latent factor models:
• Incorporating features

e.g. for cold-start recommendation

• Implicit feedback

e.g. when ratings aren’t available, but other actions are

• Incorporating temporal information into latent factor models

seasonal effects, short-term “bursts”, long-term trends, etc.

• Missing-not-at-random 

incorporating priors about items that were not bought or rated

• The Netflix prize



Things I didn’t get to…

Socially regularized recommender 

systems
see e.g. “Recommender Systems with Social Regularization” 
http://research.microsoft.com/en-us/um/people/denzho/papers/rsr.pdf

social regularizer

network

http://research.microsoft.com/en-us/um/people/denzho/papers/rsr.pdf


Questions?

Further reading:
Yehuda Koren’s, Robert Bell, and Chris Volinsky’s IEEE computer article:

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf

Paper about the “Missing-at-Random” assumption, and how to address it:

http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf

Collaborative filtering with temporal dynamics:

http://research.yahoo.com/files/kdd-fp074-koren.pdf

Recommender systems and sales diversity:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
http://research.yahoo.com/files/kdd-fp074-koren.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

