Supervised learning is the process of trying to infer from labeled data the underlying function that produced the labels associated with the data.
What is supervised learning?

Given **labeled training data** of the form

\[\{(\text{data}_1, \text{label}_1), \ldots, (\text{data}_n, \text{label}_n)\} \]

Infer the function

\[f(\text{data}) \rightarrow \text{labels} \]
Example

Suppose we want to build a movie recommender
e.g. which of these films will I rate highest?
Q: What are the labels?

A: ratings that others have given to each movie, and that I have given to other movies
Q: What is the data?

A: features about the movie and the users who evaluated it

Movie features: genre, actors, rating, length, etc.

User features: age, gender, location, etc.
Movie recommendation:

\[f(\text{data}) \xrightarrow{?} \text{labels} \]

=

\[f(\text{user features, movie features}) \xrightarrow{?} \text{star rating} \]
Design a system based on **prior knowledge**, e.g.

```python
def prediction(user, movie):
    if (user[‘age’] <= 14):
        if (movie[‘mpaa_rating’]) == “G”):
            return 5.0
        else:
            return 1.0
    else if (user[‘age’] <= 18):
        if (movie[‘mpaa_rating’]) == “PG”):
            return 5.0
    ..... Etc.
```

Is this **supervised learning**?
Solution 2

Identify words that I frequently mention in my social media posts, and recommend movies whose plot synopses use similar types of language.

Is this supervised learning?

argmax similarity(synopsis, post)
Identify which attributes (e.g. actors, genres) are associated with positive ratings. Recommend movies that exhibit those attributes.

Is this **supervised learning**?
Solution 1

(design a system based on prior knowledge)

Disadvantages:
• Depends on possibly false assumptions about how users relate to items
• Cannot adapt to new data/information

Advantages:
• Requires no data!
Solution 2

(identify similarity between wall posts and synopses)

Disadvantages:
- Depends on possibly false assumptions about how users relate to items
- May not be adaptable to new settings

Advantages:
- Requires data, but does not require labeled data
Solution 3

(identify attributes that are associated with positive ratings)

Disadvantages:
• Requires a (possibly large) dataset of movies with labeled ratings

Advantages:
• Directly optimizes a measure we care about (predicting ratings)
• Easy to adapt to new settings and data
Supervised versus unsupervised learning

Learning approaches attempt to model data in order to solve a problem.

Unsupervised learning approaches find patterns/relationships/structure in data, but are not optimized to solve a particular predictive task.

Supervised learning aims to directly model the relationship between input and output variables, so that the output variables can be predicted accurately given the input.
Regression is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions).
Linear regression assumes a predictor of the form

$$X\theta = y$$

(or $Ax = b$ if you prefer)

- **matrix of features** (data)
- **unknowns** (which features are relevant)
- **vector of outputs** (labels)
rating = \langle 0, \text{ features} \rangle

g_i = \langle 0, \text{ features}, c_i \rangle

rating = \theta_0 + \theta_1 \cdot \text{length}
Linear regression assumes a predictor of the form

\[X\theta = y \]

Q: Solve for theta

A:

\[\theta = (X^TX)^{-1}X^Ty \]
Example 1

How do preferences toward certain beers vary with age?
Example 1

Beers:

Bourbon County

- **BA Score** 100 (world-class, 9,587 ratings)
- **THE BRUS** 95 (world-class, 9,537 ratings)

Brewed by:
Goose Island Beer Co.
Illinois, United States

Style / ABV
American Double / Imperial Stout | 13.86% ABV

Availability: Winter

Notes/Commercial Description:
60 IBU

(Rated by: drosbag on 06-26-2003)

Ratings/reviews:

- **4.35/5**
- **5.2%**

Serving: 355 mL bottle poured into a 9 oz Libbey Embassy sniffer ("bottled on: 08/16/14 11:09").

Appearance: Deep, dark near-black brown. Hazy, light brown fringe of foam and limited lacing; no head.

Smell: Roasted malt, vanilla, and some warming alcohol.

Taste: Roasted malts, cocoa, burnt caramel, molasses, vanilla and dark fruit. Bourbon barrel is hinted at but never takes over.

Mouthfeel: Medium to full body and light carbonation with a very lush, silky smooth feel.

Overall: Not as complex or intense as some newer barrel-aged stouts, but so smooth and balanced with all the elements tightly integrated.

User profiles:

HipCzech

- Male, from Texas
- **Accionado**
- **Joined:** Jul 12, 2014
- **Points:** 175
- **Beers:** 108
- **Places:** 6
- **Posts:** 10
- **Likes Received:** 0
- **Trading:** 0% | 0
- **Last Seen:** Today at 12:19 AM

HipCzech was last seen: Today at 12:19 AM
Example 1

50,000 reviews are available on http://jmcauley.ucsd.edu/cse158/data/beer/beer_50000.json (see course webpage)

See also – non-alcoholic beers: http://jmcauley.ucsd.edu/cse158/data/beer/non-alcoholic-beer.json
Example 1

Real-valued features

How do preferences toward certain beers vary with age?
How about \(\text{ABV} \)?

\[
\text{rating} = \theta_0 + \theta_1 \cdot \text{[user age]}
\]

(code for all examples is on http://jmcauley.ucsd.edu/cse158/code/week1.py)
Example 1

Real-valued features

What is the interpretation of:

$$\theta = (3.4, 10e^{-7})$$

(code for all examples is on http://jmcauley.ucsd.edu/cse158/code/week1.py)
Example 2

Categorical features

How do beer preferences vary as a function of gender?

(code for all examples is on http://jmcauley.ucsd.edu/cse158/code/week1.py)
Example 3

Random features

What happens as we add more and more random features?

(code for all examples is on http://jmcauley.ucsd.edu/cse158/code/week1.py)
Exercise

How would you build a feature to represent the month, and the impact it has on people’s rating behavior?