
CSE 158 – Lecture 17
Web Mining and Recommender Systems

Temporal data mining

This week

Temporal models
This week we’ll look back on some of the topics already

covered in this class, and see how they can be adapted to

make use of temporal information

1. Regression – sliding windows and autoregression

2. Classification – dynamic time-warping

3. Dimensionality reduction - ?

4. Recommender systems – some results from Koren

Next lecture:

1. Text mining – “Topics over Time”

2. Social networks – densification over time

1. Regression

How can we use features such as product properties and

user demographics to make predictions about real-valued

outcomes (e.g. star ratings)?

How can we

prevent our

models from

overfitting by

favouring simpler

models over more

complex ones?

How can we

assess our

decision to

optimize a

particular error

measure, like the

MSE?

2. Classification

Next we

adapted

these ideas

to binary or

multiclass

outputs
What animal is

in this image?

Will I purchase

this product?

Will I click on

this ad?

Combining features

using naïve Bayes models Logistic regression Support vector machines

3. Dimensionality reduction

Principal component

analysis Community detection

4. Recommender Systems

Rating distributions and the

missing-not-at-random

assumption
Latent-factor models

CSE 158 – Lecture 17
Web Mining and Recommender Systems

Regression for sequence data

Week 1 – Regression

Given labeled training data of the form

Infer the function

Time-series regression

Here, we’d like to predict sequences of

real-valued events as accurately as

possible.

Time-series regression

Method 1: maintain a “moving

average” using a window of some fixed

length

Time-series regression

Method 1: maintain a “moving

average” using a window of some fixed

length
• This can be computed efficiently via dynamic

programming:

Time-series regression

Also useful to plot data:

timestamp timestamp

ra
ti

n
g

ra
ti

n
g

BeerAdvocate, ratings over time BeerAdvocate, ratings over time

Scatterplot

Sliding window

(K=10000)

seasonal effects

long-term

trends

Code on:

http://jmcauley.ucsd.edu/code/week10.py

http://jmcauley.ucsd.edu/code/week10.py

Time-series regression

Method 2: weight the points in the

moving average by age

Time-series regression

Method 3: weight the most recent

points exponentially higher

Methods 1, 2, 3

Method 1: Sliding window

Method 2: Linear decay

Method 3: Exponential decay

Time-series regression

Method 4: all of these models are

assigning weights to previous values

using some predefined scheme, why not

just learn the weights?

Time-series regression

Method 4: all of these models are

assigning weights to previous values

using some predefined scheme, why not

just learn the weights?

• We can now fit this model using least-squares

• This procedure is known as autoregression

• Using this model, we can capture periodic effects, e.g. that

the traffic of a website is most similar to its traffic 7 days ago

CSE 158 – Lecture 17
Web Mining and Recommender Systems

Classification of sequence data

Week 2

How can we predict binary or

categorical variables?

{0,1}, {True, False}

{1, … , N}

Another simple algorithm: nearest

neighbo(u)rs

- A G C A T

-

G

A

C

Time-series classification

As you recall…

The longest-common subsequence algorithm is

a standard dynamic programming problem

2nd sequence

1st sequence

- A G C A T

-

G

A

C

Time-series classification

As you recall…

The longest-common subsequence algorithm is

a standard dynamic programming problem

- A G C A T

- 0 0 0 0 0 0

G 0 0 1 1 1 1

A 0 1 1 1 2 2

C 0 1 1 2 2 2

2nd sequence

1st sequence

= optimal move is to delete from 1st sequence

= optimal move is to delete from 2nd sequence

= either deletion is equally optimal

= optimal move is a match

Time-series classification

The same type of algorithm is used to find

correspondences between time-series data (e.g.

speech signals), whose length may vary in

time/speed

DTW_cost = infty

for i in range(1,N):

for j in range(1,M):

d = dist(s[i], t[j]) # Distance between

sequences s and t and points i and j

DTW[i,j] = d + min(DTW[i-1, j],

DTW[i, j-1],

DTW[i-1, j-1]

return DTW[N,M]

skip from seq. 1

skip from seq. 2

match

output is a distance

between the two sequences

Time-series classification

• This is a simple procedure to infer the

similarity between sequences, so we could

classify them (for example) using nearest-

neighbours (i.e., by comparing a sequence to

others with known labels)

CSE 158 – Lecture 17
Web Mining and Recommender Systems

Temporal recommender systems

Week 4/5

Recommender Systems go beyond the methods we’ve seen so

far by trying to model the relationships between people and

the items they’re evaluating

my (user’s)

“preferences”
HP’s (item)

“properties”
preference

Toward

“action”

preference toward

“special effects”

is the movie

action-

heavy?

are the special effects good?

Compatibility

Week 4/5

Predict a user’s rating of an item

according to:

By solving the optimization problem:

(e.g. using stochastic gradient descent)

error regularizer

Temporal latent-factor models

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

(Netflix changed their

interface)

(People tend to give higher ratings to

older movies)

Netflix ratings by

movie age

Netflix ratings

over time

To build a reliable system (and to win the Netflix prize!) we

need to account for temporal dynamics:

So how was this actually done?

Temporal latent-factor models

To start with, let’s just assume that it’s only the bias terms

that explain these types of temporal variation (which, for

the examples on the previous slides, is potentially enough)

Idea: temporal dynamics for items can be explained by

long-term, gradual changes, whereas for users we’ll need a

different model that allows for “bursty”, short-lived

behavior

Temporal latent-factor models

temporal bias model:

For item terms, just separate the dataset into (equally sized) bins:*

*in Koren’s paper they suggested ~30 bins corresponding to about 10 weeks each for Netflix

or bins for periodic effects (e.g. the day of the week):

What about user terms?

• We need something much finer-grained

• But – for most users we have far too little data to fit very

short term dynamics

Temporal latent-factor models

Start with a simple model of drifting dynamics for users:

mean rating

date for user u

before (-1) or after

(1) the mean date

days away from

mean date

hyperparameter

(ended up as x=0.4 for Koren)

Temporal latent-factor models

Start with a simple model of drifting dynamics for users:

mean rating

date for user u

before (-1) or after

(1) the mean date

days away from

mean date

hyperparameter

(ended up as x=0.4 for Koren)

time-dependent user bias can then be defined as:

overall

user bias

sign and scale for

deviation term

Temporal latent-factor models

Real data

Netflix ratings

over time

Fitted model

Temporal latent-factor models

time-dependent user bias can then be defined as:

overall

user bias

sign and scale for

deviation term

• Requires only two parameters per user and captures some

notion of temporal “drift” (even if the model found

through cross-validation is (to me) completely unintuitive)

• To develop a slightly more

expressive model, we can

interpolate smoothly between

biases using splines
control points

Temporal latent-factor models

number of control

points for this user
(k_u = n_u^0.25 in Koren)

time associated

with control point
(uniformly spaced)

user bias associated

with this control point

Temporal latent-factor models

number of control

points for this user
(k_u = n_u^0.25 in Koren)

time associated

with control point
(uniformly spaced)

user bias associated

with this control point

• This is now a reasonably flexible model, but still only

captures gradual drift, i.e., it can’t handle sudden changes

(e.g. a user simply having a bad day)

Temporal latent-factor models

• Koren got around this just by adding a “per-day” user bias:

bias for a particular day (or session)

• Of course, this is only useful for particular days in which

users have a lot of (abnormal) activity

• The final (time-evolving bias) model then combines all of

these factors:
global

offset

user bias

gradual deviation

(or splines)

single-day dynamics

item bias
gradual item

bias drift

Temporal latent-factor models

Finally, we can add a time-dependent scaling factor:

factor-dependent

user drift

also defined as

Latent factors can also be defined to evolve in the same way:

factor-dependent

short-term effects

Temporal latent-factor models

Summary

• Effective modeling of temporal factors was absolutely critical to

this solution outperforming alternatives on Netflix’s data

• In fact, even with only temporally evolving bias terms, their

solution was already ahead of Netflix’s previous (“Cinematch”)

model

On the other hand…

• Many of the ideas here depend on dynamics that are quite

specific to “Netflix-like” settings

• Some factors (e.g. short-term effects) depend on a high density

of data per-user and per-item, which is not always available

Temporal latent-factor models

Summary

• Changing the setting, e.g. to model the stages of progression

through the symptoms of a disease, or even to model the

temporal progression of people’s opinions on beers, means

that alternate temporal models are required

rows: models

of increasingly

“experienced”

users

columns:

review timeline

for one user

Questions?

Further reading:

“Collaborative filtering with temporal

dynamics”

Yehuda Koren, 2009
http://research.yahoo.com/files/kdd-fp074-koren.pdf

http://research.yahoo.com/files/kdd-fp074-koren.pdf

