CSE 158 – Lecture 17

Web Mining and Recommender Systems

Temporal data mining

This week

Temporal models

This week we'll look back on some of the topics already covered in this class, and see how they can be adapted to make use of **temporal** information

- 1. Regression sliding windows and autoregression
 - 2. Classification dynamic time-warping
 - 3. Dimensionality reduction -?
- 4. Recommender systems some results from Koren

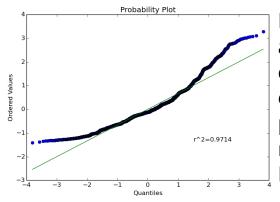
Next lecture:

- 1. Text mining "Topics over Time"
- 2. Social networks densification over time

1. Regression

How can we use **features** such as product properties and user demographics to make predictions about **real-valued** outcomes (e.g. star ratings)?

How can we prevent our models from **overfitting** by favouring simpler models over more complex ones?



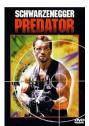
How can we assess our decision to optimize a particular error measure, like the MSE?

2. Classification

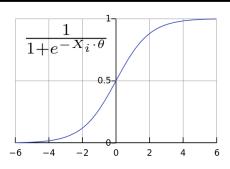
Next we adapted these ideas to **binary** or **multiclass** outputs

What animal is in this image?

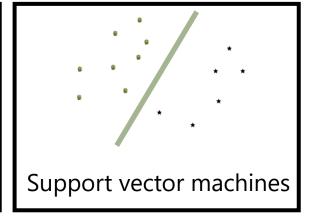
Will I purchase Will I click on this product? this ad?



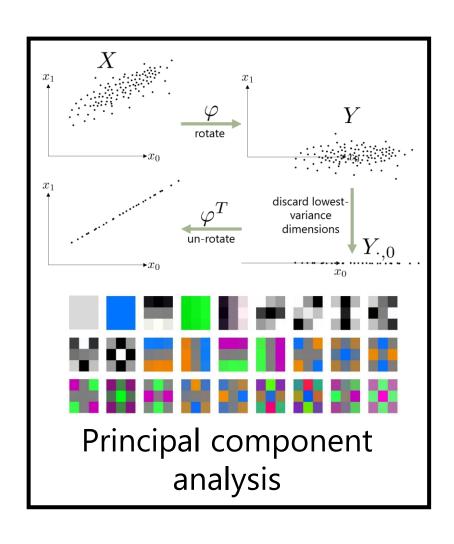
Combining features using naïve Bayes models

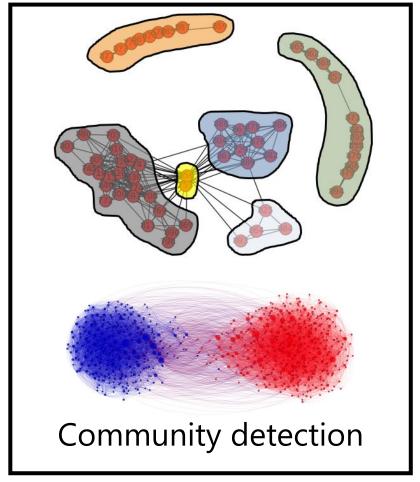


Logistic regression

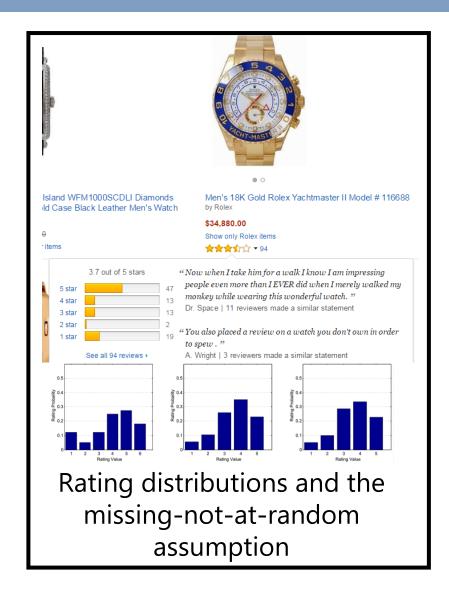


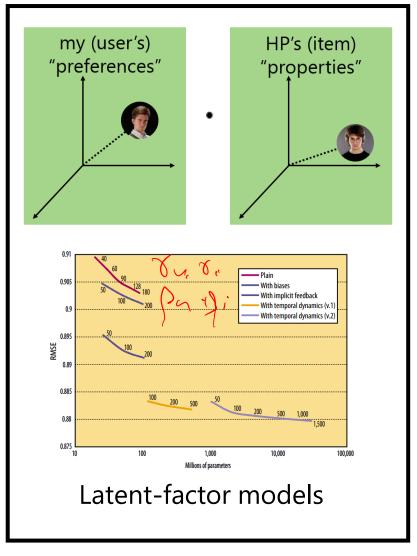
3. Dimensionality reduction





4. Recommender Systems





CSE 158 — Lecture 17

Web Mining and Recommender Systems

Regression for sequence data

Week 1 – Regression

Given labeled training data of the form

$$\{(\mathrm{data}_1, \mathrm{label}_1), \ldots, (\mathrm{data}_n, \mathrm{label}_n)\}$$

Infer the function

$$f(\text{data}) \stackrel{?}{\rightarrow} \text{labels}$$

Here, we'd like to predict sequences of **real-valued** events as accurately as possible.

$$\frac{\chi_{n+2}}{da+a''} = \frac{\chi_{n+2}}{16601}$$

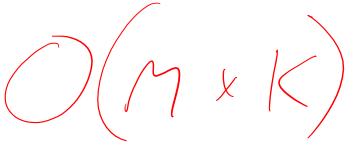
$$\frac{\chi_{n+2}}{da+a''}$$

$$\frac{\chi_{n+2}}{da+a''} = \frac{\chi_{n+2}}{16601}$$

$$\frac{\chi_{n+2}}{da+a''} = \frac{\chi_{n+2}}{16601}$$

Method 1: maintain a "moving average" using a window of some fixed length

$$f(x_1, \dots, x_m) = \chi_{n-1} + \chi_{n-1}$$

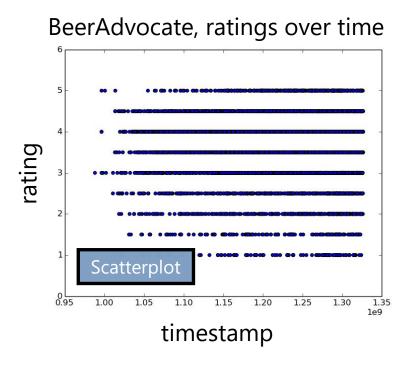


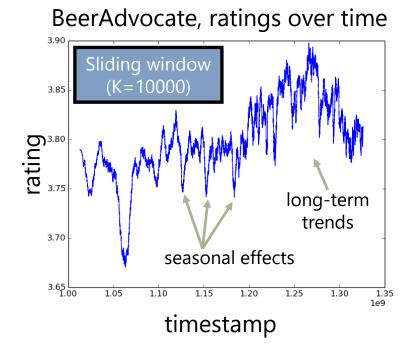
Method 1: maintain a "moving average" using a window of some fixed length

This can be computed efficiently via dynamic programming:

$$f(x_1,\ldots,x_{m+1}) = \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) - \begin{array}{c} \\ \\ \\ \end{array}\right)$$

Also useful to plot data:





Code on: http://jmcauley.ucsd.edu/code/week10.py

Method 2: weight the points in the moving average by age

$$f(x_1, \dots, x_m) = K \times \gamma - (K-1) \times \gamma_{-1} - (K-2) \times \gamma_{-2}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 + \lambda + \lambda + 1 + 1 + 1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

$$= \frac{1 \times \gamma \times \gamma_{-1} - K+1}{1 \times \gamma_{-1} - K+1}$$

Method 3: weight the most recent points exponentially higher

$$f(x_1) = \chi_1$$

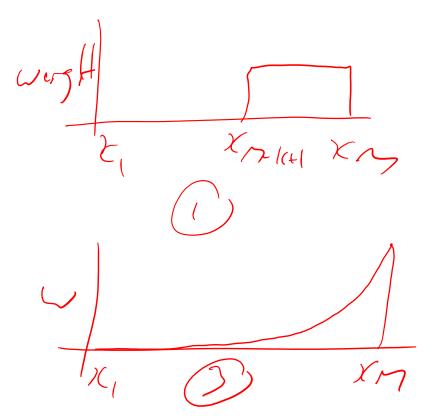
$$f(x_1, \dots, x_m) = \chi_1 + \left(1 - \chi_1 + \chi_2 + \chi_3 + \chi_4 \right)$$

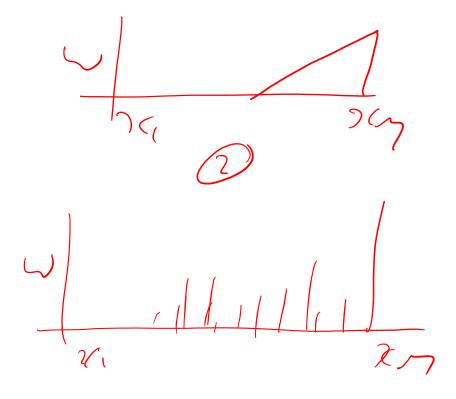
Methods 1, 2, 3

Method 1: Sliding window

Method 2: Linear decay

Method 3: Exponential decay





Method 4: all of these models are assigning weights to previous values using some predefined scheme, why not just learn the weights?

$$f(x_1, \dots, x_m) = \bigcup_{\delta} \chi_{m} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell} \chi_{s\ell}$$

$$= \bigcup_{k=0}^{\infty} \chi_{m-k} + \bigcup_{\ell} \chi_{m-1} + \bigcup_{\ell}$$

Method 4: all of these models are assigning **weights** to previous values using some predefined scheme, why not just **learn** the weights?

- We can now fit this model using least-squares
- This procedure is known as autoregression
- Using this model, we can capture **periodic** effects, e.g. that the traffic of a website is most similar to its traffic 7 days ago

<u>CSE 158 – Lecture 17</u>

Web Mining and Recommender Systems

Classification of sequence data

Week 2

How can we predict **binary** or **categorical** variables?

$$f(\text{data}) \stackrel{?}{\to} \text{labels}$$
 {1, ..., N}

Another simple algorithm: nearest neighbo(u)rs

2nd sequence

As you recall...

The longest-common subsequence algorithm is a standard dynamic programming problem

	- <	Α	G	С	Α	T	1st				
-				6	\mathcal{O}	0	1st sequence				
/ G	6	0	21	[1	(
A	0	(1	(2	2					
C	0		1	2	2	2					
							-				

As you recall...

The longest-common subsequence algorithm is a standard dynamic programming problem

	ı	A	G	С	A	T	1st
-	0	0	0	0	0	0	1 st sequence
G	0	1 0	\ 1	1	1	— 1	
Α	0	\ 1	1	1	2	_ 2	
С	0	† 1	1	2	1 2	2	

2nd sequence

= optimal move is to delete from 1st sequence

= optimal move is to delete from 2nd sequence

= either deletion is equally optimal

= optimal move is a match

The same type of algorithm is used to find correspondences between time-series data (e.g. speech signals), whose length may vary in time/speed

```
DTW_cost = infty
for i in range(1,N):
   for j in range(1,M):
    d = dist(s[i], t[j]) # Distance between
sequences s and t and points i and j
    DTW[i,j] = d + min(DTW[i-1, j]), skip from seq. 1
    DTW[i, j-1], skip from seq. 2
    DTW[i-1, j-1]
return DTW[N,M]
```

output is a **distance** between the two sequences

 This is a simple procedure to infer the similarity between sequences, so we could classify them (for example) using nearestneighbours (i.e., by comparing a sequence to others with known labels)

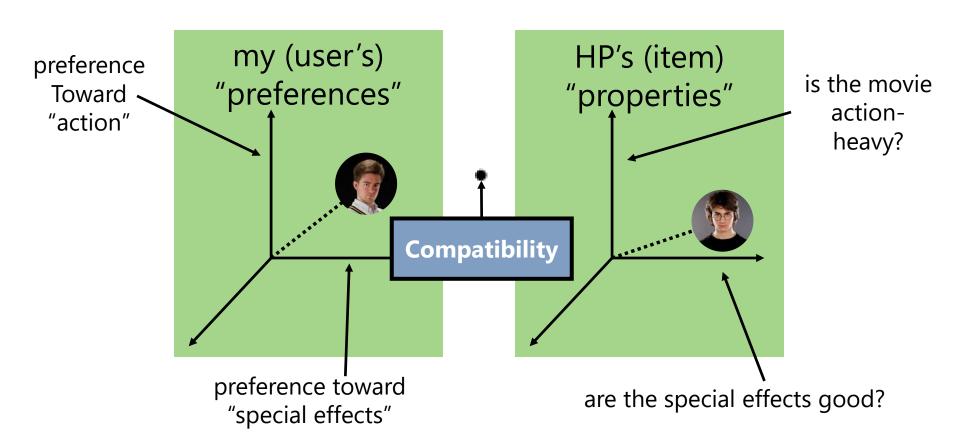
CSE 158 — Lecture 17

Web Mining and Recommender Systems

Temporal recommender systems

Week 4/5

Recommender Systems go beyond the methods we've seen so far by trying to model the **relationships** between people and the items they're evaluating



Week 4/5

Predict a user's rating of an item according to:

$$f(u,i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i$$

By solving the optimization problem:

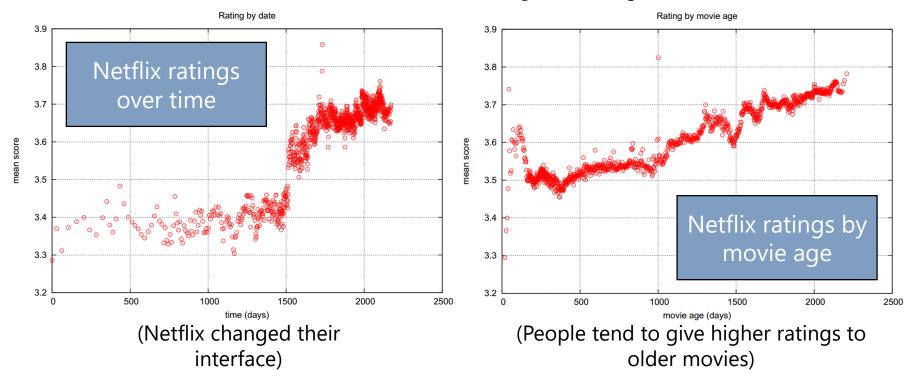
$$\arg\min_{\alpha,\beta,\gamma} \sum_{u,i} (\alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i - R_{u,i})^2 + \lambda \left[\sum_{u} \beta_u^2 + \sum_{i} \beta_i^2 + \sum_{i} \|\gamma_i\|_2^2 + \sum_{u} \|\gamma_u\|_2^2 \right]$$

error

regularizer

(e.g. using stochastic gradient descent)

To build a reliable system (and to win the Netflix prize!) we need to account for **temporal dynamics:**



So how was this actually done?

Figure from Koren: "Collaborative Filtering with Temporal Dynamics" (KDD 2009)

To start with, let's just assume that it's only the **bias** terms that explain these types of temporal variation (which, for the examples on the previous slides, is potentially enough)

$$b_{u,i}(t) = \alpha + \beta_u(t) + \beta_i(t)$$

Idea: temporal dynamics for *items* can be explained by long-term, gradual changes, whereas for users we'll need a different model that allows for "bursty", short-lived behavior

temporal bias model:

$$b_{u,i}(t) = \alpha + \beta_u(t) + \beta_i(t)$$

For item terms, just separate the dataset into (equally sized) bins:*

$$\beta_i(t) = \beta_i + \beta_{i, \text{Bin}(t)}$$

*in Koren's paper they suggested ~30 bins corresponding to about 10 weeks each for Netflix

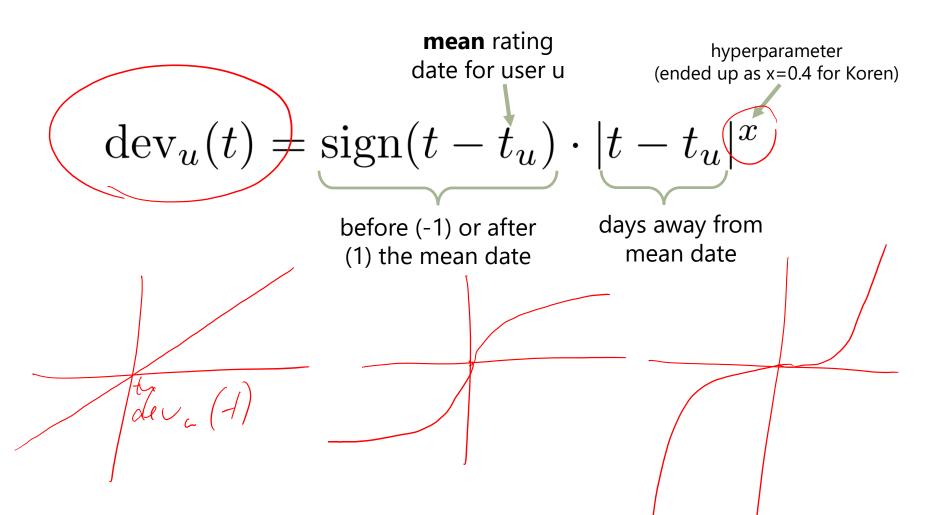
or bins for periodic effects (e.g. the day of the week):

$$\beta_i(t) = \beta_i + \beta_{i,\text{Bin}(t)} + \beta_{i,\text{period}(t)}$$

What about user terms?

- We need something much finer-grained
- But for most users we have far too little data to fit very short term dynamics

Start with a simple model of drifting dynamics for users:



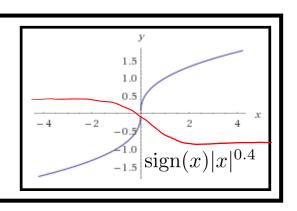
Start with a simple model of drifting dynamics for users:

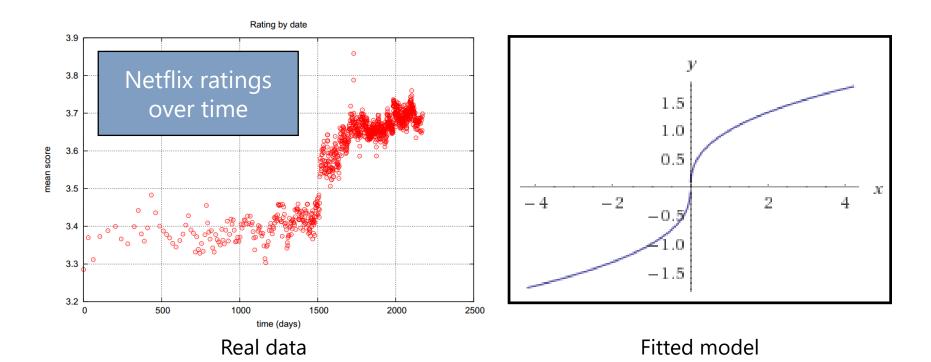
$$\det v_u(t) = \underset{\text{(ended up as x=0.4 for Koren)}}{\operatorname{mean rating}} \cdot |t - t_u|^x$$

$$\det v_u(t) = \underset{\text{(1) the mean date}}{\operatorname{before (-1) or after}} \cdot |t - t_u|^x$$

time-dependent user bias can then be defined as:

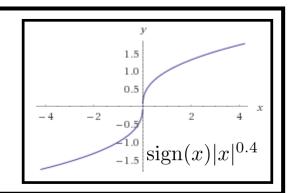
$$eta_u^{(1)}(t) = eta_u + lpha_u \cdot \operatorname{dev}_u(t)$$
overall sign and scale for user bias deviation term



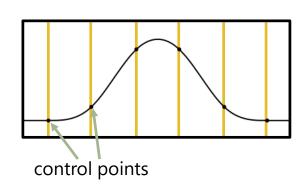


time-dependent user bias can then be defined as:

$$\beta_u^{(1)}(t) = \beta_u + \alpha_u \cdot \operatorname{dev}_u(t)$$
 overall sign and scale for user bias deviation term



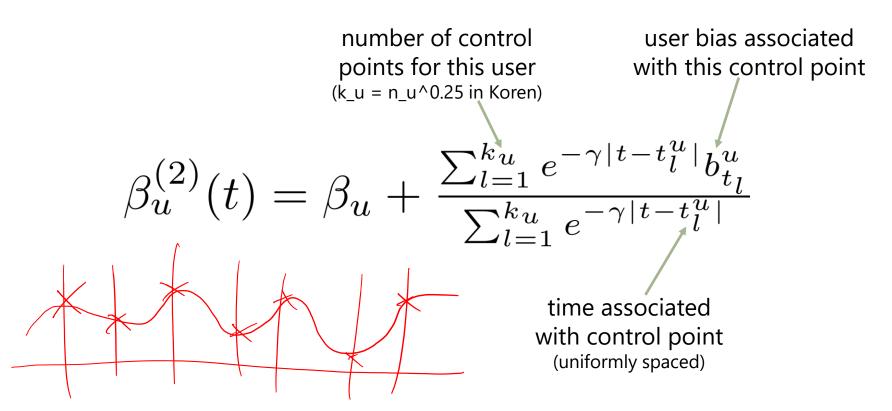
- Requires only two parameters per user and captures some notion of temporal "drift" (even if the model found through cross-validation is (to me) completely unintuitive)
- To develop a slightly more expressive model, we can interpolate smoothly between biases using splines



number of control points for this user (k_u = n_u^0.25 in Koren) user bias associated with this control point

$$\beta_u^{(2)}(t) = \beta_u + \frac{\sum_{l=1}^{k_u} e^{-\gamma|t-t_l^u|} b_{t_l}^u}{\sum_{l=1}^{k_u} e^{-\gamma|t-t_l^u|}}$$

time associated with control point (uniformly spaced)



 This is now a reasonably flexible model, but still only captures gradual drift, i.e., it can't handle sudden changes (e.g. a user simply having a bad day)

Koren got around this just by adding a "per-day" user bias:

$$\beta_{u,t}$$

bias for a particular day (or session)

- Of course, this is only useful for particular days in which users have a lot of (abnormal) activity
- The final (time-evolving bias) model then combines all of these factors:

global gradual deviation (or splines) item bias gradual item bias drift
$$\beta_{u,i}(t) = \alpha + \beta_u + \alpha_u \cdot \text{dev}_u(t) + \beta_{u,t} + \beta_i + \beta_{i,\text{Bin}(t)}$$
 user bias single-day dynamics

Finally, we can add a time-dependent scaling factor:

$$\beta_{u,i}(t) = \alpha + \beta_u + \alpha_u \cdot \text{dev}_u(t) + \beta_{u,t} + (\beta_i + \beta_{i,\text{Bin}(t)}) \cdot c_u(t)$$
also defined as $c_u + c_{u,t}$

Latent factors can also be defined to evolve in the same way:

$$\gamma_{u,k}(t) = \gamma_{u,k} + \alpha_{u,k} \cdot \operatorname{dev}_u(t) + \gamma_{u,k,t}$$
 factor-dependent user drift factor-dependent short-term effects

Summary

- Effective modeling of temporal factors was absolutely critical to this solution outperforming alternatives on Netflix's data
 - In fact, even with only temporally evolving bias terms, their solution was already ahead of Netflix's previous ("Cinematch") model

On the other hand...

- Many of the ideas here depend on dynamics that are quite specific to "Netflix-like" settings
- Some factors (e.g. short-term effects) depend on a high density of data per-user and per-item, which is not always available

Summary

 Changing the setting, e.g. to model the stages of progression through the symptoms of a disease, or even to model the temporal progression of people's opinions on beers, means that alternate temporal models are required

rows: models of increasingly "experienced" users columns: review timeline for one user

Questions?

Further reading:
"Collaborative filtering with temporal dynamics"
Yehuda Koren, 2009

http://research.yahoo.com/files/kdd-fp074-koren.pdf