
CSE 158 – Lecture 17
Web Mining and Recommender Systems

Temporal data mining



This week

Temporal models
This week we’ll look back on some of the topics already 

covered in this class, and see how they can be adapted to 

make use of temporal information

1. Regression – sliding windows and autoregression

2. Classification – dynamic time-warping

3. Dimensionality reduction - ?

4. Recommender systems – some results from Koren

Next lecture:

1. Text mining – “Topics over Time”

2. Social networks – densification over time



1. Regression

How can we use features such as product properties and 

user demographics to make predictions about real-valued

outcomes (e.g. star ratings)?

How can we 

prevent our 

models from 

overfitting by 

favouring simpler 

models over more 

complex ones?

How can we 

assess our 

decision to 

optimize a 

particular error 

measure, like the 

MSE?



2. Classification

Next we 

adapted 

these ideas 

to binary or 

multiclass

outputs
What animal is 

in this image?

Will I purchase

this product?

Will I click on

this ad?

Combining features 

using naïve Bayes models Logistic regression Support vector machines



3. Dimensionality reduction

Principal component 

analysis Community detection



4. Recommender Systems

Rating distributions and the 

missing-not-at-random 

assumption
Latent-factor models
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Regression for sequence data



Week 1 – Regression

Given labeled training data of the form

Infer the function



Time-series regression

Here, we’d like to predict sequences of 

real-valued events as accurately as 

possible.



Time-series regression

Method 1: maintain a “moving 

average” using a window of some fixed 

length



Time-series regression

Method 1: maintain a “moving 

average” using a window of some fixed 

length
• This can be computed efficiently via dynamic 

programming:



Time-series regression

Also useful to plot data:

timestamp timestamp

ra
ti

n
g

ra
ti

n
g

BeerAdvocate, ratings over time BeerAdvocate, ratings over time

Scatterplot

Sliding window 

(K=10000)

seasonal effects

long-term 

trends

Code on:

http://jmcauley.ucsd.edu/code/week10.py

http://jmcauley.ucsd.edu/code/week10.py


Time-series regression

Method 2: weight the points in the 

moving average by age



Time-series regression

Method 3: weight the most recent 

points exponentially higher



Methods 1, 2, 3

Method 1: Sliding window

Method 2: Linear decay

Method 3: Exponential decay



Time-series regression

Method 4: all of these models are 

assigning weights to previous values 

using some predefined scheme, why not 

just learn the weights?



Time-series regression

Method 4: all of these models are 

assigning weights to previous values 

using some predefined scheme, why not 

just learn the weights?

• We can now fit this model using least-squares

• This procedure is known as autoregression

• Using this model, we can capture periodic effects, e.g. that 

the traffic of a website is most similar to its traffic 7 days ago
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Classification of sequence data



Week 2

How can we predict binary or 

categorical variables?

{0,1}, {True, False}

{1, … , N}

Another simple algorithm: nearest 

neighbo(u)rs



- A G C A T

-

G

A

C

Time-series classification

As you recall…

The longest-common subsequence algorithm is 

a standard dynamic programming problem

2nd sequence

1st sequence



- A G C A T
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C

Time-series classification

As you recall…

The longest-common subsequence algorithm is 

a standard dynamic programming problem

- A G C A T

- 0 0 0 0 0 0

G 0 0 1 1 1 1

A 0 1 1 1 2 2

C 0 1 1 2 2 2

2nd sequence

1st sequence

= optimal move is to delete from 1st sequence

= optimal move is to delete from 2nd sequence

= either deletion is equally optimal

= optimal move is a match



Time-series classification

The same type of algorithm is used to find 

correspondences between time-series data (e.g. 

speech signals), whose length may vary in 

time/speed 

DTW_cost = infty

for i in range(1,N):

for j in range(1,M):

d = dist(s[i], t[j]) # Distance between 

sequences s and t and points i and j

DTW[i,j] = d + min(DTW[i-1, j  ],

DTW[i,   j-1],

DTW[i-1, j-1]

return DTW[N,M]

skip from seq. 1

skip from seq. 2

match

output is a distance

between the two sequences



Time-series classification

• This is a simple procedure to infer the 

similarity between sequences, so we could 

classify them (for example) using nearest-

neighbours (i.e., by comparing a sequence to 

others with known labels)
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Temporal recommender systems



Week 4/5

Recommender Systems go beyond the methods we’ve seen so 

far by trying to model the relationships between people and 

the items they’re evaluating

my (user’s)

“preferences”
HP’s (item) 

“properties”
preference

Toward

“action”

preference toward

“special effects”

is the movie 

action-

heavy?

are the special effects good?

Compatibility



Week 4/5

Predict a user’s rating of an item 

according to:

By solving the optimization problem:

(e.g. using stochastic gradient descent)

error regularizer



Temporal latent-factor models

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

(Netflix changed their 

interface)

(People tend to give higher ratings to 

older movies)

Netflix ratings by 

movie age

Netflix ratings 

over time

To build a reliable system (and to win the Netflix prize!) we 

need to account for temporal dynamics:

So how was this actually done?



Temporal latent-factor models

To start with, let’s just assume that it’s only the bias terms 

that explain these types of temporal variation (which, for 

the examples on the previous slides, is potentially enough)

Idea: temporal dynamics for items can be explained by 

long-term, gradual changes, whereas for users we’ll need a 

different model that allows for “bursty”, short-lived 

behavior



Temporal latent-factor models

temporal bias model:

For item terms, just separate the dataset into (equally sized) bins:*

*in Koren’s paper they suggested ~30 bins corresponding to about 10 weeks each for Netflix

or bins for periodic effects (e.g. the day of the week):

What about user terms?

• We need something much finer-grained

• But – for most users we have far too little data to fit very 

short term dynamics



Temporal latent-factor models

Start with a simple model of drifting dynamics for users:

mean rating 

date for user u

before (-1) or after 

(1) the mean date

days away from 

mean date

hyperparameter

(ended up as x=0.4 for Koren)



Temporal latent-factor models

Start with a simple model of drifting dynamics for users:

mean rating 

date for user u

before (-1) or after 

(1) the mean date

days away from 

mean date

hyperparameter

(ended up as x=0.4 for Koren)

time-dependent user bias can then be defined as:

overall

user bias

sign and scale for 

deviation term



Temporal latent-factor models

Real data

Netflix ratings 

over time

Fitted model



Temporal latent-factor models

time-dependent user bias can then be defined as:

overall

user bias

sign and scale for 

deviation term

• Requires only two parameters per user and captures some 

notion of temporal “drift” (even if the model found 

through cross-validation is (to me) completely unintuitive)

• To develop a slightly more 

expressive model, we can 

interpolate smoothly between 

biases using splines
control points



Temporal latent-factor models

number of control 

points for this user
(k_u = n_u^0.25 in Koren)

time associated 

with control point
(uniformly spaced)

user bias associated 

with this control point



Temporal latent-factor models

number of control 

points for this user
(k_u = n_u^0.25 in Koren)

time associated 

with control point
(uniformly spaced)

user bias associated 

with this control point

• This is now a reasonably flexible model, but still only 

captures gradual drift, i.e., it can’t handle sudden changes 

(e.g. a user simply having a bad day)



Temporal latent-factor models

• Koren got around this just by adding a “per-day” user bias:

bias for a particular day (or session)

• Of course, this is only useful for particular days in which 

users have a lot of (abnormal) activity

• The final (time-evolving bias) model then combines all of 

these factors:
global

offset

user bias

gradual deviation

(or splines)

single-day dynamics

item bias
gradual item

bias drift



Temporal latent-factor models

Finally, we can add a time-dependent scaling factor:

factor-dependent 

user drift

also defined as 

Latent factors can also be defined to evolve in the same way:

factor-dependent

short-term effects



Temporal latent-factor models

Summary

• Effective modeling of temporal factors was absolutely critical to 

this solution outperforming alternatives on Netflix’s data

• In fact, even with only temporally evolving bias terms, their 

solution was already ahead of Netflix’s previous (“Cinematch”) 

model

On the other hand…

• Many of the ideas here depend on dynamics that are quite 

specific to “Netflix-like” settings

• Some factors (e.g. short-term effects) depend on a high density 

of data per-user and per-item, which is not always available



Temporal latent-factor models

Summary

• Changing the setting, e.g. to model the stages of progression 

through the symptoms of a disease, or even to model the 

temporal progression of people’s opinions on beers, means 

that alternate temporal models are required

rows: models 

of increasingly 

“experienced” 

users

columns:

review timeline 

for one user



Questions?

Further reading:

“Collaborative filtering with temporal 

dynamics”

Yehuda Koren, 2009
http://research.yahoo.com/files/kdd-fp074-koren.pdf

http://research.yahoo.com/files/kdd-fp074-koren.pdf

