
CSE 158 – Lecture 14
Web Mining and Recommender Systems

AdWords

Advertising

1. We can’t recommend everybody the

same thing (even if they all want it!)

• So far, we have an algorithm that takes “budgets” into

account, so that users are shown a limited number of ads,

and ads are shown to a limited number of users

• But, all of this only applies if we see all the users and all the

ads in advance

• This is what’s called an offline algorithm

Bipartite matching

users ads

(each advertiser

gets one user)

On Monday we looked at matching problems which are a

flexible way to find compatible user-to-item matches, while also

enforcing “budget” constraints

.75

.24

.67

.97

.59

.92

.58

Advertising

2. We need to be timely

• But in many settings, users/queries come in one at a time,

and need to be shown some (highly compatible) ads

• But we still want to satisfy the same quality and budget

constraints

• So, we need online algorithms for ad recommendation

What is adwords?

Adwords allows advertisers to bid on

keywords

• This is similar to our matching setting in that advertisers have

limited budgets, and we have limited space to show ads

image from blog.adstage.io

What is adwords?

Adwords allows advertisers to bid on

keywords

• This is similar to our matching setting in that advertisers have

limited budgets, and we have limited space to show ads

• But, it has a number of key differences:

1. Advertisers don’t pay for impressions, but rather they pay

when their ads get clicked on

2. We don’t get to see all of the queries (keywords) in advance –

they come one-at-a-time

What is adwords?

Adwords allows advertisers to bid on

keywords

keywords

ads/advertisers

• We still want to match

advertisers to keywords to

satisfy budget constraints

• But can’t treat it as a

monolithic optimization

problem like we did before

• Rather, we need an online

algorithm

What is adwords?

Suppose we’re given

• Bids that each advertiser is willing to make for each query

(this is how much they’ll pay if the ad is clicked on)

• Each is associated with a click-through rate

• Budget for each advertiser (say for a 1-week period)

• A limit on how many ads can be returned for each query

query advertiser

What is adwords?

And, every time we see a query

• Return at most the number of ads that can fit on a page

• And which won’t overrun the budget of the advertiser

(if the ad is clicked on)

Ultimately, what we want is an algorithm

that maximizes revenue – the number of

ads that are clicked on, multiplied by the

bids on those ads

Competitiveness ratio

What we’d like is:

the revenue should be as close as possible to what we

would have obtained if we’d seen the whole problem up

front

(i.e., if we didn’t have to solve it online)

We’ll define the competitive ratio as:

see http://infolab.stanford.edu/~ullman/mmds/book.pdf for more detailed definition

http://infolab.stanford.edu/~ullman/mmds/book.pdf

Greedy solution

Let’s start with a simple version of the

problem…

1. One ad per query

2. Every advertiser has the same budget

3. Every ad has the same click through rate

4. All bids are either 0 or 1

(either the advertiser wants the query, or they don’t)

Greedy solution

Then the greedy solution is…

• Every time a new query comes in, select any advertiser who

has bid on that query (who has budget remaining)

• What is the competitive ratio of this algorithm?

Greedy solution

The balance algorithm

A better algorithm…

• Every time a new query comes in, amongst advertisers who

have bid on this query, select the one with the largest

remaining budget

• How would this do on the same sequence?

The balance algorithm

see http://infolab.stanford.edu/~ullman/mmds/book.pdf for proof

A better algorithm…

• Every time a new query comes in, amongst advertisers who

have bid on this query, select the one with the largest

remaining budget

• In fact, the competitive ratio of this algorithm (still with

equal budgets and fixed bids) is (1 – 1/e) ~ 0.63

http://infolab.stanford.edu/~ullman/mmds/book.pdf

The balance algorithm

What if bids aren’t equal?

Bidder Bid (on q) Budget

A 1 110

B 10 100

The balance algorithm

What if bids aren’t equal?

Bidder Bid (on q) Budget

A

B

The balance algorithm v2

We need to make two modifications

• We need to consider the bid amount when selecting the

advertiser, and bias our selection toward higher bids

• We also want to use some of each advertiser’s budget

(so that we don’t just ignore advertisers whose budget is small)

The balance algorithm v2

Advertiser:

fraction of budget remaining:

bid on query q:

Assign queries to whichever advertiser maximizes:

(could multiply by click-

through rate if click-

through rates are not equal)

The balance algorithm v2

Properties

• This algorithm has a competitive ratio of .

• In fact, there is no online algorithm for the adwords

problem with a competitive ratio better than .

(proof is too deep for me…)

Adwords

So far we have seen…

• An online algorithm to match advertisers to users (really to

queries) that handles both bids and budgets

• We wanted our online algorithm to be as good as the

offline algorithm would be – we measured this using the

competitive ratio

• Using a specific scheme that favored high bids while trying

to balance the budgets of all advertisers, we achieved a ratio

of .

• And no better online algorithm exists!

Adwords

We haven’t seen…

• AdWords actually uses a second-price auction

(the winning advertiser pays the amount that the second

highest bidder bid)

• Advertisers don’t bid on specific queries, but inexact matches

(‘broad matching’) – i.e., queries that include subsets,

supersets, or synonyms of the keywords being bid on

Questions?

Further reading:

• Mining of Massive Datasets – “The Adwords Problem”

http://infolab.stanford.edu/~ullman/mmds/book.pdf

• AdWords and Generalized On-line Matching (A. Mehta)

http://web.stanford.edu/~saberi/adwords.pdf

http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://web.stanford.edu/~saberi/adwords.pdf

CSE 158 – Lecture 14
Web Mining and Recommender Systems

Bandit algorithms

So far…

1. We’ve seen algorithms to handle

budgets between users (or queries)

and advertisers

2. We’ve seen an online version of these

algorithms, where queries show up

one at a time

3. Next, how can we learn about which

ads the user is likely to click on in the

first place?

Bandit algorithms

3. How can we learn about which ads the

user is likely to click on in the first place?

• If we see the user click on a car ad once, we know that

(maybe) they have an interest in cars

• So… we know they like car ads, should we keep

recommending them car ads?

• No, they’ll become less and less likely to click it, and in the

meantime we won’t learn anything new about what else the

user might like

Bandit algorithms

• Sometimes we should surface car ads (which we

know the user likes),

• but sometimes, we should be willing to take a

risk, so as to learn what else the user might like

one-armed

bandit

Setup

. . .
K bandits (i.e., K arms)

1

0

1

1

0

0

0

0

1

0

0

1

0

1

0

0

1

0

1

0

0

0

0

0

0

1

1

round t

t = 1

2

3

4

5

6

7

8

9

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

0

1

1

0

0

0

0

1

1

0

0

1

1

1

0

reward

• At each round t, we select

an arm to pull

• We’d like to pull the arm to

maximize our total reward

Setup

. . .
K bandits (i.e., K arms)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

round t

t = 1

2

3

4

5

6

7

8

9

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

• At each round t, we select

an arm to pull

• We’d like to pull the arm to

maximize our total reward

• But – we don’t get to see

the reward function!

reward

Setup

. . .
K bandits (i.e., K arms)

1

?

?

?

0

?

?

?

?

?

0

?

?

?

?

?

?

?

?

?

?

?

?

?

?

1

1

round t

t = 1

2

3

4

5

6

7

8

9

?

?

?

?

?

?

?

?

?

?

?

?

?

?

0

?

?

?

?

?

1

0

?

?

?

?

?

?

?

?

?

?

?

1

?

?

• At each round t, we select

an arm to pull

• We’d like to pull the arm to

maximize our total reward

• But – we don’t get to see

the reward function!

• All we get to see is the

reward we got for the arm

we picked at each round

reward

Setup

: number of arms (ads)

: number of rounds

: rewards

: which arm we pick at each round

: how much (0 or 1) this choice wins us

want to minimize regret:

reward our strategy would

get (in expectation)

reward we could have got,

if we had played optimally

Goal

• We need to come up with a

strategy for selecting arms to

pull (ads to show) that would

maximize our expected reward

• For the moment, we’re assuming

that rewards are static, i.e., that

they don’t change over time

Strategy 1 – “epsilon first”

• Pull arms at random for a while to learn the

distribution, then just pick the best arm

• (show random ads for a while until we learn

the user’s preferences, then just show what

we know they like)

: Number of steps to choose optimally

Math

: Number of steps to sample randomly

Strategy 1 – “epsilon first”

• Pull arms at random for a while to learn the

distribution, then just pick the best arm

• (show random ads for a while until we learn

the user’s preferences, then just show what

we know they like)

Math

Strategy 2 – “epsilon greedy”

• Select the best lever most of the time, pull a

random lever some of the time

• (show random ads sometimes, and the best

ad most of the time)

• Empirically, worse than epsilon-first

• Still doesn’t handle context/time

: Fraction of times to choose optimallyMath

: Fraction of times to sample randomly

Strategy 3 – “epsilon decreasing”

• Same as epsilon-greedy (Strategy 2), but

epsilon decreases over time

Math

Strategy 4 – “Adaptive epsilon greedy”

• Similar to as epsilon-decreasing (Strategy 3),

but epsilon can increase and decrease over

time

Math

Extensions

• The reward function may not be static, i.e., it may change

each round according to some process

• It could be chosen by an adversary

• The reward may not be [0,1] (e.g. clicked/not clicked), but

instead a could be a real number (e.g. revenue), and we’d

want to estimate the distribution over rewards

Extensions – Contextual Bandits

• There could be context associated with each time step

• The query the user typed

• What the user saw during the previous time step

• What other actions the user has recently performed

• Etc.

Applications (besides advertising)

• Clinical trials
(assign drugs to patients, given uncertainty about the

outcome of each drug)

• Resource allocation
(assign person-power to projects, given uncertainty about

the reward that different projects will result in)

• Portfolio design
(invest in ventures, given uncertainty about which will

succeed)

• Adaptive network routing
(route packets, without knowing the delay unless you send

the packet)

Questions?

Further reading:
Tutorial on Bandits:

https://sites.google.com/site/banditstutorial/

https://sites.google.com/site/banditstutorial/

CSE 158 – Lecture 14
Web Mining and Recommender Systems

Case study – Turning down the noise

Turning down the noise

“Turning down the noise in the

Blogosphere”
(By Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos Guestrin)

Goals:

1. Help to filter huge amounts of content, so that users see

content that is relevant – rather than seeing popular

content over and over again

2. Maximize coverage so that a variety of different content is

recommended

3. Make recommendations that are personalized to each user

some slides http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx

Turning down the noise

“Turning down the noise in the

Blogosphere”
(By Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos Guestrin)

Goals:

1. Help to filter huge amounts of content, so that users see

content that is relevant – rather than seeing popular

content over and over again

2. Maximize coverage so that a variety of different content is

recommended

3. Make recommendations that are personalized to each user

Similar to our goals with bandit

algorithms

• Exploit by recommending

content that we user is likely to

enjoy (personalization)

• Explore by recommending a

variety of content (coverage)

Turning down the noise

1. Help to filter huge amounts of content,

so that users see content that is relevant

from http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx

Turning down the noise

2. Maximize coverage so that a variety of

different content is recommended

Turning down the noise

3. Make recommendations that are

personalized to each user

1. Data and problem setting

• Data: Blogs (“the blogosphere”)

• Comparison: other systems that aggregate blog data

1. Data and problem setting

• Low-level features:

Bags-of-words (week 6/7), noun phrases, named entities

• High-level features:

Low-dimensional document representations, topic

models (week 3, week 7)

2. Maximize coverage

…Features

Posts …

cover () = amount by which { , } covers

Set A Feature fcoverA(f)

• We’d like to choose a (small) set of

documents that maximally cover the set of

features the user is interested in (later)

2. Maximize coverage

…Features

Posts …

feature

set

feature

importance

coverage of

feature by A

• Can be done (approximately) by selecting documents

greedily (with an approximation ratio of (1 – 1/e)

2. Maximize coverage

Works pretty well!

(and there are some

comparisons to existing blog

aggregators in the paper)

But – no personalization

3. Personalize

feature

set

personalized

feature

importance

coverage of

feature by A

• Need to learn weights for each user based on their

feedback (e.g. click/not-click) on each post

3. Personalize

feature

set

personalized

feature

importance

coverage of

feature by A

• Need to learn weights for each user based on their

feedback (e.g. click/not-click) on each post

• A click (or thumbs-up) on a post increases for

the features f associated with the post

• Not clicking (or thumbs-down) decreases for the

features f associated with the post

3. Personalize

day 1 day 2 day 3

feedback

on articles

suggested

weighted

interest in

topic

Summary

• Want an algorithm that covers the set

of topics that each user wants to see

• Articles can be chosen greedily, while

still covering the topics nearly optimally

• The topics to cover can also be

personalized to each user, by updating

their preferences in response to user

feedback

• Evaluated on real blog data (see paper!)

This week

We’ve looked at three features to handle

the properties unique to online

advertising
1. We need to handle budgets at the level of users and

content (Matching problems)

2. We need algorithms that can operate online (i.e., as

users arrive one-at-a-time) (AdSense)

3. We need to algorithms that exhibit an explore-exploit

tradeoff (Bandit algorithms)

Questions?

Further reading:

• Turning down the noise in the blogosphere

(by Khalid El-Arini, Gaurav Veda, Dafna Shahaf, Carlos

Guestrin)
http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-

shahaf-guestrin.pptx

http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf

http://www.select.cs.cmu.edu/publications/paperdir/kdd2009-elarini-veda-shahaf-guestrin.pptx
http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf

Assignment 1

Assignment 1

