recursion
How expressive is SQL?

• Full programming languages can express all computable functions (C, Java, etc)

Can SQL express all computable queries?

A: YES B: NO
How expressive is SQL?

Can SQL express the following query: “Is there a way to get from City1 to City2?”

B: NO
“Is there a way to get from City1 to City2 by a direct flight?”

City1 → City2

```sql
select * from flight
where from = 'City1' and to = 'City2'
```
“Is there a way to get from City1 to City2 with at most one stopovers?”

\[
\text{select } * \text{ from flight where from = 'City1' and to = 'City2'}
\]

\[
\text{select x.from, y.to from flight x, flight y where x.from = 'City1' and x.to = y.from and y.to = 'City2'}
\]
“Is there a way to get from City1 to City2 with at most two stopovers?”

\[
\begin{align*}
\text{City1} & \quad \rightarrow \quad \text{City2} \\
\text{OR} & \\
\text{select} & \quad \star \quad \text{from} \quad \text{flight} \\
\text{where} & \quad \text{from} = \text{‘City1’} \quad \text{and} \quad \text{to} = \text{‘City2’} \\
\text{OR} & \\
\text{select} & \quad x.\text{from} \quad , \quad y.\text{to} \\
\text{from} & \quad \text{flight} \ x, \ \text{flight} \ y \\
\text{where} & \quad x.\text{from} = \text{‘City1’} \quad \text{and} \\
& \quad x.\text{to} = y.\text{from} \quad \text{and} \quad y.\text{to} = \text{‘City2’} \\
\text{OR} & \\
\text{select} & \quad x.\text{from} \quad , \quad z.\text{to} \\
\text{from} & \quad \text{flight} \ x, \ \text{flight} \ y, \ \text{flight} \ z \\
\text{where} & \quad x.\text{from} = \text{‘City1’} \quad \text{and} \quad x.\text{to} = y.\text{from} \quad \text{and} \\
& \quad y.\text{to} = z.\text{from} \quad \text{and} \quad z.\text{to} = \text{‘City2’}
\end{align*}
\]
“Is there a way to get from City1 to City2 with at most k stopovers?”

Need $k+1$ tuple variables!
Now

“Is there a way to get from City1 to City2 with any number of stopovers?”

Cannot do in basic SQL!
Similar Examples

• Parts-components relation:
 “Find all subparts of some given part A”
• Parent/child relation:
 “Find all of John’s descendants”
More general: Transitive closure of graph

Find the pairs of nodes \((x, y)\) that are connected by some directed path

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Computing transitive closure T of G

“Find the pairs of nodes $<a,b>$ that are connected in G”

Same as:
“find pairs of nodes $<a,b>$ at distance 1” UNION
“find pairs of nodes $<a,b>$ at distance at most 2” UNION

..........
“find pairs of nodes $<a,b>$ at distance at most k” UNION
..........

When to stop?
At some point, no new nodes are added.
Distance cannot be larger than total number of nodes in G.
Example
Example

Distance 1
Example

Distance ≤ 2
Example

Distance ≤ 3
Algorithm

Denote by T_k the pairs of nodes at distance at most k

T_1 : “find pairs of nodes <a,b> at distance 1”

\[\text{select } * \text{ from } G \]

T_k : “find the pairs of nodes <a,b> at distance at most k”

\[\text{union} \]

\[\text{(select } * \text{ from } T_{k-1}) \]

\[\text{where } x.B = y.A) \]
Example

\[T_1 \]

Diagram:

```
 a---b
  \\
   \ 基
  \\
     c
```

\[\rightarrow d \rightarrow e \]
Example
Example
Add recursion to SQL

(Not part of the standard)

create recursive view T as
(select * from G)
union
(select x.A, y.B
from G x, T y
where x.B = y.A)

Semantics:
1. Start with empty T
2. While T changes
 {evaluate view with current T;
 union result with T }

Note: This must terminate, since there are finitely many tuples one can add to T (if no new values are created)
One Solution

Add recursion to SQL

Alternative formulation:

with recursive T as
(select * from G)
union
(select x.A, y.B
from G x, T y
where x.B = y.A)
select * from T ;
Another Example

<table>
<thead>
<tr>
<th>frequents</th>
<th>drinker</th>
<th>bar</th>
</tr>
</thead>
</table>

Friends: Drinkers who frequent the same bar

Find transitive closure of **Friends**

```sql
create recursive view T as
(select f1.drinker as drinker1, f2.drinker as drinker2
from frequents f1, frequents f2
where f1.bar = f2.bar)
union
(select t1.drinker1, f2.drinker as drinker2
from T t1, frequents f1, frequents f2
where t1.drinker2 = f1.drinker and f1.bar = f2.bar)
```
Problematic example

```sql
create recursive view T as
  (select A, 0 as N from R)
union
  (select A, N+1 as N from T)
```

- Never terminates
- Arithmetic in selects, aggregate functions are forbidden in recursive definitions
Another Solution

Embedded SQL

Powerful way to overcome SQL limitations

Client:
full programming language
(Java, C++, etc)

DB Server

SQL Requests

Answers
Transitive Closure in embedded SQL

\[T := G \]
\[\Delta := G \]

while \(\Delta \neq \emptyset \) do

\{ \[T_{\text{old}} = T \]
\[T := (\text{select } * \text{ from } T) \]
\[\text{union} \]
\[(\text{select } x.A, y.B \text{ from } G x, T y \]
\[\text{where } x.B = y.A) \]
\[\Delta := T – T_{\text{old}} \]
\}

Output \(T \)}
Example

T_1 and Δ_1
Example

T_2 and Δ_2
Example

T_3 and Δ_3
Example

\(T_4 = T_3 \) and \(\Delta_4 = \emptyset : \text{Stop!} \)
Algorithm revisited

\[
\begin{align*}
T := G \\
\Delta := G \\
\text{while } \Delta \neq \emptyset \text{ do} \\
\quad \{ \text{T}_{\text{old}} = T \\
\quad T := (\text{select } * \text{ from } T) \\
\quad \text{union} \\
\quad (\text{select } x.A, y.B \text{ from } G x, T y \text{ where } x.B = y.A) \\
\quad \Delta := T - T_{\text{old}} \} \\
\text{Output } T
\end{align*}
\]

Converges in diameter(G) iterations
(maximum distance between two nodes in G)
Optimization: “semi-naïve” evaluation

Use at least one new tuple (from Δ) every time!

\[
\begin{align*}
T &:= G \\
\Delta &:= G \\
\text{while } \Delta \neq \Phi \text{ do} \\
& \quad \{ T_{old} = T \\
& \quad T := (\text{select } \ast \text{ from } T) \\
& \quad \quad \text{union} \\
& \quad \quad (\text{select } x.A, y.B \text{ from } G x, \Delta y \\
& \quad \quad \quad \text{where } x.B = y.A) \\
& \quad \Delta := T - T_{old} \} \\
\text{Output } T
\end{align*}
\]
Example

T_1 and Δ_1
Example

T_1 and Δ_2

No longer recomputed $<c,b>$ but recomputed $<c,d>$
Example

T_1 and Δ_3

No longer recompute $<a,d>$ but recompute $<c,e>$
Example

$T_4 = T_3$ and $\Delta_4 = \emptyset$: Stop!
Faster Convergence (double recursion)

\[T := G \]
\[\Delta := G \]
while \(\Delta \neq \emptyset \) do
\[\{ T_{\text{old}} = T \]
\[T := (\text{select } * \text{ from } T) \]
union
(\text{select } x.A, y.B \text{ from } T x, T y \]
where \(x.B = y.A \))
\[\Delta := T - T_{\text{old}} \]
\}\]
Output \(T \)

Converges in \(\log(\text{diameter}(G)) \) iterations
Example

Focus on computing $\langle a_0, a_8 \rangle$

$\quad a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8$
Example

Focus on computing $<a_0,a_8>$

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Focus on computing \(\langle a_0, a_8 \rangle \)
Example

Focus on computing \(<a_0,a_8>\)
Example

Compare to linear recursion (first program)

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Compare to linear recursion (first program)

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Compare to linear recursion (first program)

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Compare to linear recursion (first program)

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Compare to linear recursion (first program)

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Compare to linear recursion (first program)

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Compare to linear recursion (first program)

a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8
Example

Compare to linear recursion (first program)

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \rightarrow a_5 \rightarrow a_6 \rightarrow a_7 \rightarrow a_8 \]
Example

Compare to linear recursion (first program)
T := G
Δ := G
while Δ ≠ ∅ do
 \{ T_{old} = T
 T := (select * from T)
 union
 (select x.A, y.B from Δ x, T y
 where x.B = y.A)
 union
 (select x.A, y.B from T x, Δ y
 where x.B = y.A)
 Δ := T − T_{old} \}
Output T
JDBC

- Java Database Connectivity
- Allows SQL to be executed from within Java programs
- Similar to embedded SQL with the following difference:
 - Embedded SQL: SQL processed at compile time
 - JDBC: SQL interpreted at run-time