Lecture 18:
Buffering & Scheduling

CSE 123: Computer Networks
Alex C. Snoeren

HW 3 due NOW
Lecture 18 Overview

- Buffer Management
 - FIFO
 - RED

- Traffic Policing/Scheduling
Typical high-performance router

- IQ + VoQ + OQ
 - Speedup of 2
 - Central scheduler
 - Fixed-sized internal cells

- Pro
 - Can achieve utilization of 1
 - Can scale to > Tb/s

- Con
 - Multiple congestion points
 - Complexity
Key Router Challenges

- **Buffer management**: which packet to drop when?
 - We only have finite-length queues
- **Scheduling**: which packet to transmit next?
Basic Buffer Management

- FIFO + drop-tail
 - Simplest choice
 - Used widely in the Internet
- FIFO (first-in-first-out)
 - Implies single class of traffic
- Drop-tail
 - Arriving packets get dropped when queue is full regardless of flow or importance
- Important distinction:
 - FIFO: scheduling discipline
 - Drop-tail: drop policy
FIFO/Drop-Tail Problems

- Leaves responsibility of congestion control completely to the edges (e.g., TCP)
- Does not separate between different flows
- No policing: send more packets \Rightarrow get more service
- Synchronization: end hosts react to same events
Active Queue Management

- Design active router queue management to aid congestion control

- Why?
 - Router has unified view of queuing behavior
 - Routers see actual queue occupancy (distinguish queue delay and propagation delay)
 - Routers can decide on transient congestion, based on workload
Design Objectives

- Keep throughput high and delay low
 - High power (throughput/delay)

- Accommodate bursts

- Queue size should reflect ability to accept bursts rather than steady-state queuing

- Improve TCP performance with minimal hardware changes in router
Random Early Detection

- Detect incipient congestion
- Assume hosts respond to lost packets
- Avoid window synchronization
 - Randomly mark packets
- Avoid bias against bursty traffic
RED Algorithm

- Maintain running average of queue length in router

- If $\text{avg} < \text{min}_{th}$ do nothing
 - Low queuing, send packets through

- If $\text{avg} > \text{max}_{th}$, drop packet
 - Protection from misbehaving sources

- Else drop/mark packet in a manner proportional to queue length
 - Notify sources of incipient congestion
 - Dropping vs Marking tradeoff (Explicit Congestion Notification)
RED Operation

Max thresh

Min thresh

Average Queue Length

P(drop)

1.0

max_p

min_th

max_th

Avg queue length

CSE 123 – Lecture 18: Buffering & Scheduling
Non-responsive Senders

1 UDP (10 Mbps) and 31 TCPs sharing a 10 Mbps line
Token Bucket Basics

- Parameters
 - r – average rate, i.e., rate at which tokens fill the bucket
 - b – bucket depth (limits size of burst)
 - R – maximum link capacity or peak rate (optional parameter)
- A bit can be transmitted only when a token is available

\[
\frac{b \cdot R}{R - r}
\]

Maximum # of bits sent

- Graph showing
 - r bps
 - b bps
 - $\leq R$ bps
 - $b/(R-r)$
 - $b \cdot R/(R-r)$
 - slope r
 - slope R

CSE 123 – Lecture 18: Buffering & Scheduling
For next time…

- Read Ch. 6.3-4 in P&D