Content of this lecture

- Course information (personnel, policy, schedule, misc.)
- What is OS? What does it do?
- History of OS
- Summary
Some Survey

- How many CS majors vs. ECE/others?
- How many know Java?
- Why are you taking this class?
About this course...

Principles
- System concepts
- OS design
- Some theory
- Rationale
- Practice

Goals
- Understand OS decisions
- Basis for future learning
- Get hands dirty
Why are you here?

- Fulfill the requirement
- Prerequisite for other courses
 - Network
 - Distributed systems
 - Real-time systems
 - Multimedia systems
- Future plans
 - Graduate schools for CS
 - Employment (interview 😊)
What does the class cover?

- Introduce you to operating system concepts
 - Hard to use a computer without interacting with OS
 - Understanding the OS makes you a more effective programmer

- Cover important systems concepts in general
 - Caching, concurrency, memory management, I/O, protection

- Teach you to deal with larger software systems
 - Programming assignments much larger than many courses
 - Warning: Many people will consider course very hard
 - In past, majority of people report 15 hours/week
Why Study OS?

- Operating systems are a maturing field
 - Most people use a handful of mature OSes
 - Hard to get people to switch operating systems
 - Hard to have impact with a new OS

- High-performance servers are an OS issue
 - Face many of the same issues as OSes

- Resource consumption is an OS issue
 - Battery life, radio spectrum, etc.

- Security is an OS issue
 - Hard to achieve security without a solid foundation

- New “smart” devices need new OSes

- Web browsers increasingly face OS issues
OS: Love or Hate Relationship

- After finishing CSE120
 - Some students: *OS is so cool. Now I finally understand how things run on computers* 😊
 - Some students: *Ur, it is so messy, so complicated* 😞

- So what does it tell you about CSE120?
 - It is messy, more complex than other classes
 - But it can open up a new world for you
Who am I?

- Yuanyuan (YY) Zhou
- Research: operating systems, software reliability, computer architecture, storage systems
- Brief BIO
 - Ph.D, Princeton, 2000
 - NEC Research, 2000-2002
 - UIUC, Professor, 2002-2009 (mostly teach OS)
 - Have graduated 19 Ph.Ds, six of them are now professors at:
 - U. of Chicago, UIUC, John Hopkins, Waterloo, Toronto, Ohio-State (also do research on OS & teach OS 😊)
 - Co-founded 3 companies (2 were acquired)
 - Make me probably the most “industrial” professor in CSE
A little bit personal

- Two soccer kids and one spoiled dog
 - One of them is a college freshman. Guess which one? 😊
You are advised to drop my class

- You have insufficient pre-requisite
 - CSE 30 (Computer Organization and Systems Programming),
 - CSE 101 (Design and Analysis of Algorithms)
 - CSE 100 (data structures)
 - CSE 70 or CSE 110 (Software Engineering)

- You want an easy class
 - You don’t care about learning or your future job search

- You cannot understand or tolerate my accent 😊
Personnel

- **Instructor:**
 - Yuanyuan Zhou (yyzhou@cs.ucsd.edu)
 - Office hours (EBU3B 3210):
 - Tu/Thu 11am-12pm

- **Teaching Assistants**
 - Carrick Diana Bartle (cbartle@ucsd.edu)
 - Prashant Singh (prs032@ucsd.edu)
 - Chengcheng Xiang (c4xiang@eng.ucsd.edu)
 - Huan Zhou (huz051@ucsd.edu)

- **4 Tutors**

- **Lab hours:** Google calendar view on class website and piazza

- **Discussion section (you can attend either one)**
 - Mon 9–3-3:50pm in Center Hall 212
 - Mon 6–4-4:50pm in Center Hall 212
Class Information

- **Textbook:**
 Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
 Operating Systems: Three Easy Pieces Version 0.91 (Online version is OK too. You can click the chapters in the schedule on class website)

- **Class Website**
 http://cseweb.ucsd.edu/classes/fa17/cse120-ab/

- **Slides, schedule, grading policy, etc. is available on the class web page**
Course Information

- Course material taught through class lectures, textbook readings, and handouts
- Course assignments
 - Four large programming projects
 - Homework (for exam preparation)
- Discussion sections for asking questions on
 - Project, lecture material or homework
 - Clarification and supplementary materials
- Piazza (a link from class web site)
Projects

● Nachos is an instructional OS
 - It is a user-level operating system and a machine simulator
 - Will become abundantly clear (or not so clear) very soon

● Programming environment will be Java on Unix (Linux)
 - The projects will require serious time commitments
 - waiting until the last minute is not an option

● You will do four projects using Nachos
 - Installation & Submission (individual)
 - Concurrency and synchronization
 - Multiprogramming
 - Virtual memory or FS

● You will work in groups of 1-3 on project 1-3
 - Start looking for partners now
Labs

- We will use the labs in the CSE basement
 - Linux running on PCs
- You can also use your home machine
 - The same project source will work on Linux (but not Windows)
 - Note: We will test and grade on lab machines
 - Be sure to test your projects there as well
Homeworks

- 4 homeworks to reinforce lecture material and help you preparing for exams

- As long as you submit and write some answer related to the question, you get FULL credit
 - Your choice: you can spend the time to learn something, or you can just waste it
 - Why? Avoid penalizing students who do their work without cheating (but get to taken points off)
Exams

- **Midterm**: Oct 31st, lecture time
 - Covers first half of class + something related to projects
 - So do your project and do NOT copy!
 - Each session has different midterm questions

- **Final**: Covers second half of class + synchronizations from first part

- No makeup exams
 - Unless dire circumstances

- No cheating sheet is allowed
Grades

- Homework: 6% (4 homeworks)
- Midterm: 28%
 - Containing around 5-10% of material related to projects
- Final: 33%
 - Containing around 5-10% of material related to projects
- Projects: 33%
Re-grading policy

- Students have 1 week (after the grade for a project/exam is released) to request for re-grading

- After the re-grading period, no re-grading request will be granted for the project/exams
Cheating Policy

- Academic integrity
- Your work in this class must be your own - we have a zero tolerance policy towards cheating of any kind and any student who cheats will get a failing grade in the course and reported to campus at the end of the quarter
- Both the cheater and the student who aided the cheater will be held responsible for the cheating
- In 2016, we have caught 10% students cheating (CSE is serious on this---has received the campus award for Academic Integrity)
How NotTo Pass CSE 120

● Do not come to lecture
 – It’s nice out, the slides are online, and the material is in the book anyway
 – TRUTH: Lecture material is the basis for exams

● Copy other people’s projects
 – First, it is cheating.
 – And yes, we do have tools to check for cheating in projects.
 – Well, how can you answer the questions in midterms or final exams?
How NotTo Pass (2)

- Do not ask questions in lecture, office hours, or email
 - It’s scary, I don’t want to embarrass myself
 - Asking questions is the best way to clarify lecture material at the time it is being presented

- Wait until the last couple of days to start a project
 - We’ll have to do the crunch anyways, why do it early?
 - The projects cannot be done in the last few days
 - Repeat: The projects cannot be done in the last few days
 - Each quarter groups learn that starting early meant finishing all of the projects on time…and some do not
Office Hours---Shishi… a secret

- You can talk about many things during my office hours
 - Career, job search, startups

- My office hours for future quarters are always open to you
Lab Hours

- 4 TAs and 4 Tutors will provide lab hours
 - Will be posted on class website
 - Will aim to provide some lab hours every day including weekends
 - Will use autograder in the lab to answer questions

- Leverage it!
Any Questions?

- Before we start …

- Do you think this will be a hard class?
What Is an OS?

Anyone?

What does it do?

Give me a few names of an OS?
 - For desktops?
 - For smart phones?

Is Virtual Machine an OS?
Is Android an OS?
Is Java Virtual Machine (JVM) an OS?
“Code” that:

- Sits between programs & hardware
- Sits between different programs
- Sits between different users

But what does it do?

to provide an orderly and controlled allocation of the processors, memories and I/O devices among the various programs competing for them

Real life analogy:

- Government?
- Mom
OS is…

- The operating system is the software layer between user applications and the hardware

- The OS is “all the code that you didn’t have to write” to implement your application
The OS abstracts/controls/mediates access to hardware resources (what resources?)
- Computation (CPUs)
- Volatile storage (memory) and persistent storage (disk, etc.)
- Communication (network, modem, etc.)
- Input/output devices (keyboard, display, printer, camera, etc.)

The OS defines a set of logical resources (objects) and a set of well-defined operations on those objects (interfaces)
- Physical resources (CPU and memory)
- Logical resources (files, programs, names)
Benefits to Applications

- Simpler
 - no tweaking device registers
- Device independent
 - all network cards look the same
- Portable
 - Across Windows95/98/ME/NT/2000/XP/Vista/Windows 7
- Worry less about interference from other applications
What does an OS do?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

Services
- Abstraction
- Simplification
- Convenience
- Standardization

Makes computers seem simpler
What Is an OS?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

Finite resources
Competing demands
Examples:
- CPU
- Memory
- Disk
- Network

Linux or Windows? Democrat or Republic?

Government
Limited budget, Land, Oil, Gas,
What Is an OS?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

You can’t hurt me
I can’t hurt you

Implies some degree of safety & security

Law and order

Government
What Is an OS?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

The OS giveth
The OS taketh away

Voluntary at run time
Implied at termination
Involuntary
Cooperative

Government

Income Tax
What Is an OS?

Resources
- Allocation
- Protection
- Reclamation
- Virtualization

illusion of infinite, private resources

Memory versus disk
Timeshared CPU

More extreme cases possible (& exist)

Government
Social security

CSE120 - Operating Systems,
Yuanyuan Zhou

36
Some Questions to Ponder

- What is part of an OS? What is not? Is the window system part of an OS? Java?

- Popular OSes today are Windows, Linux, and OS X
 - How different/similar do you think these OSes are?

- Somewhat surprisingly, OSes change all of the time
 - Consider the series of releases of NT, Linux, OS X…
 - What are the drivers of OS change?
 - New hardware, new applications

- What are the most compelling issues facing OSes today?
The Operating System Zoo

- Mainframe operating systems
- Server operating systems
- Multiprocessor operating systems
- Personal computer operating systems
- Real-time operating systems
- Embedded operating systems
- Mobile/Pads operating systems
- IoT (internet of things) operating systems
- Cloud operating systems
Historical Comparison

<table>
<thead>
<tr>
<th></th>
<th>Mainframe</th>
<th>Mini</th>
<th>Micro/Mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>System $/Worker Salary</td>
<td>10:1 – 100:1</td>
<td>10:1 – 1:1</td>
<td>1:10-1:1000</td>
</tr>
<tr>
<td>Goal</td>
<td>System utilization</td>
<td>Overall cost</td>
<td>Productivity</td>
</tr>
<tr>
<td>Target</td>
<td>Capacity</td>
<td>Features</td>
<td>Ease of Use</td>
</tr>
</tbody>
</table>
Summary

- Course overview
- Policy and requirement
- What is OS?
- OS history

- Next lecture: system overview (chapter 1)
After this lecture…

- Browse the course web
 - http://cseweb.ucsd.edu/classes/fa17/cse120-ab/

- Start reading Nachos (online)

- Discussion sections (DON’T MISS them)
 - 1st week: Tutorial on GitHub
 - 2nd week: Tutorial on Nachos

- Start thinking about partners for project groups

- See me up front if you have any questions
- Let the fun begin!