Instructions

Upload a single file to Gradescope for each group. All group members’ names and PIDs should be on each page of the submission.

Your assignments in this class will be evaluated not only on the correctness of your answers, but on your ability to present your ideas clearly and logically. You should always explain how you arrived at your conclusions, using mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument for why something is true, your answers should always be well-supported. Your goal should be to convince the reader that your results and methods are sound.

Reading Sipser Sections 1.1, 1.2

Key Concepts Deterministic finite automata (DFA), state diagram, computation trace, accept / reject, language of an automaton, regular language, union of languages, concatenation of languages, star of a language, closure of the class of regular languages under certain operations, nondeterministic finite automata (NFA), nondeterministic computation, ε arrows, equivalence of NFA and DFA.

1. (10 points) Draw the state diagram of the DFA that recognizes the language over $\Sigma = \{0, 1\}$

 $$A = \{w \in \{0, 1\}^* : w \text{ does not contain the string } 1101 \text{ as a substring}\}.$$

 For full credit your DFA should have no more than five states.

 Solution: The easiest way to solve this problem is with the complement language, $\overline{A} = \{w \in \{0, 1\}^* : w \text{ has } 1101 \text{ as a substring}\}$, then flip the accept/reject states.

2. (10 points) Draw the state diagram of a DFA over the alphabet $\Sigma = \{0, 1\}$ that recognizes the language

 $$B = \{1^n0^m \mid n + m \text{ is an odd positive integer}\}.$$

 For full credit your machine should have at most six states. Hint: this language can be seen as an intersection of two simpler languages.

 Solution: B can be seen as the intersection of the following two languages:

 $$B_1 = \{w \in \{0, 1\}^* : w \text{ has odd length}\}, B_2 = \{1^n0^m : n, m \geq 0\}.$$

 These have the respective DFAs:
Now we use the product construction on the following two DFAs. This yields the answer below.

Note, we can combine the right most two nodes into one for a DFA with 5 states.

3. (10 points) Recall, for a language \(L \subseteq \Sigma^* \) its complement is the set of strings over \(\Sigma \) not in \(L \), denoted as \(\overline{L} = \{ w \notin L \} \subseteq \Sigma^* \). Let \(A \) be the language above and let \(C = \{ w \in \{0,1\}^* : w \text{ has even length} \} \). Draw the state diagrams of the DFA of the following language. Hint: use the construction from the book proving regular languages are closed under union.

 (a) \(A \cup C \).
 (b) \(\overline{A} \cap C \)

solution: The language for \(C \) is the same as \(B_1 \):

We labeled the states in the DFAs for \(C \) and \(A \) from left to right in increasing order (the DFA for \(C \) has start state \(c_0 \), for example).

The DFA for \(A \cup C \) is as below.
4. (10 points) We first review some definitions.

- The concatenation of two languages \(L_1, L_2 \) over \(\Sigma \) is \(L_1 \circ L_2 = \{ x_1x_2 : x_i \in L_i \} \).
- Lastly, the language \(L^* = \{ x_1x_2\ldots x_k : x_i \in L, k \geq 0 \} \).

Let \(A \) and \(B \) be the languages above. Draw the NFA state diagrams of the following languages:

(a) \(\overline{A} \circ B \)
(b) \((\overline{A})^* \circ \overline{B} \)

solution: The first NFA is:
The second NFA is as follows:

5. (10 points) In this problem we are going to construct one regular language over alphabet Σ_2 from
another regular language over the alphabet Σ_1. First, let

$$f : \Sigma_1 \cup \{\varepsilon\} \to \Sigma_2 \cup \{\varepsilon\}$$

be any function that maps the empty string to the empty string $f(\varepsilon) = \varepsilon$. We can extend the function to another function on the sets of strings over these alphabets

$$f^* : \Sigma_1^* \to \Sigma_2^*$$

by applying the function to each character separately

$$f^*(w) = f^*(x_1 x_2 \ldots x_k) = f(x_1) f(x_2) \ldots f(x_k).$$

Here are some examples:

- f^* given by $f : \{a, b, c\} \cup \{\varepsilon\} \to \{0, 1\} \cup \{\varepsilon\}$ where $f(a) = 0$, $f(b) = 1$, $f(c) = \varepsilon$ maps acb to 01.
- f^* given by $f : \{0, 1\} \cup \{\varepsilon\} \to \{0, 1\} \cup \{\varepsilon\}$ where $f(1) = 1$, $f(0) = 1$ maps the language B from problem 2 to the language $f^*(B) = \{1^l : l \geq 1\}$.

Now let $f : \Sigma_1 \cup \{\varepsilon\} \to \Sigma_2 \cup \{\varepsilon\}$ be a function where $f(\varepsilon) = \varepsilon$. Prove that if $L \subset \Sigma_1^*$ is a regular language then its image under f^*, $f^*(L) = \{f^*(w) : w \in L\} \subseteq \Sigma_2^*$, is a regular language in Σ_2^*. Hint: show how, starting from a DFA for L, you can construct an NFA for $f^*(L)$. You can use the theorem from class saying that if an NFA recognizes a language then it is regular.

solution: Recall, a language is regular if and only if there exists an NFA or DFA that accepts it.

We prove this by applying the function to the edges of a DFA/NFA for L over Σ_1. Call this DFA “D.” Apply the function $f(\cdot)$ to the edges of D to form an NFA. Call this NFA “N.”

Say $w = x_1 \ldots x_n \in L$. Then, the path in D, the DFA for L, reading w ends in an accept state. By following the same edges on the NFA N, we get a path representing the string $f^*(w) = f(x_1) \ldots f(x_k)$ ending in an accept state for the NFA!

Therefore, the NFA accepts $f^*(L)$. Now, we must make sure the NFA accepts no strings outside of $f^*(L)$. Say we pick out a path from the start state to the accept state in the NFA. This path represents a string, $y_1 \ldots y_m$. However, this string is a string of characters from the function:

$$y_i = f(x_i).$$

Looking back at the DFA for L, we have the same path! Therefore $y_1 \ldots y_m \in f^*(L)$ and $x_1 \ldots x_m \in L$.

For completeness, we give the DFA to NFA transformation in terms of their exact definitions.

The DFA $D = (Q, \Sigma_1, \delta, q_0, F)$ is transformed to the NFA $N = (Q, \Sigma_2, \delta_2, q_0, F)$. All that is left is to do is to define the function $\delta_2 : Q \times \Sigma_2 \to P(Q)$. This is $\delta_2(q, y) = \{\delta(q, x) : y = f(x)\}$.