1. True or false. Briefly justify your answers.
 a. Intersection of two regular languages is regular.
 b. If a language L satisfies the pumping lemma, then L is regular.
 c. There is a nonregular language L such that every proper subset of L is regular.
 d. Complement of a nonregular language could be either regular or nonregular.
 e. Union of nonregular languages is always nonregular.
 f. Intersection of a regular language and a nonregular language is nonregular.
 g. If L is a regular language and L' is a nonregular language that is disjoint from L, then $L \cup L'$ is nonregular.

2. Suppose L is a nonregular language and $w \in L$ is a string in L. Prove that the language $L' = L \setminus \{w\}$ is nonregular as well.

3. Give a DFA for the following languages over $\Sigma = \{0, 1\}$, and write a regular expression for each language.
 a. $L = \{ w : w$ starts with a 0 and has odd length or starts with a 1 and has even length $\}$
 b. $L = \{ w :$ every odd position of w is 1 $\}$
 c. L is all strings w such that in every prefix of w, the number of 0’s and 1’s differ by at most one.
4. Give an NFA for the following languages over $\Sigma = \{0, 1\}$, and write a regular expression for each language.
 a. $L = \{xy : x has at most 5 symbols and every odd position of y is a 1\}$
 b. $L = \{w : w has an even number of 0's or has exactly three 1's\}$

5. Construct equivalent DFAs for the following NFAs. Show your work.
 a.
 ![Diagram]
 b.
 ![Diagram]

6. Prove the following languages are nonregular.
 a. $L = \{0^n1^m0^n : n, m \geq 0 \}$
 b. $L = \{w : w is a palindrome \}$
 c. $L = \{wtw : w, t are arbitrary strings of length at least one \}$
 d. $L = \{0^m1^n : m \geq n \}$
 e. $L = \{a^ib^jc^k : i, j, k \geq 0 \text{ and if } i = 0, \text{ then } j = k \}$
 f. $L = \{a^{2n}b^{3n}a^n : n \geq 0 \}$

7. Prove that the union of two regular languages is regular.