1. **(10 points)** Draw the state diagram of the DFA that recognizes the language over $\Sigma = \{0, 1\}$

$$A = \{w \in \{0, 1\}^*: w \text{ does not contain the string } 1101 \text{ as a substring}\}.$$

For full credit your DFA should have no more than five states.

solution: The easiest way to solve this problem is with the complement language, $\overline{A} = \{w \in \{0, 1\}^*: w \text{ has } 1101 \text{ as a substring}\}$, then flip the accept/reject states.

![State Diagram](image)

2. **(10 points)** Draw the state diagram of a DFA over the alphabet $\Sigma = \{0, 1\}$ that recognizes the language

$$B = \{1^n0^m | n + m \text{ is an odd positive integer}\}.$$

For full credit your machine should have at most six states. Hint: this language can be seen as an intersection of two simpler languages.

solution: B can be seen as the intersection of the following two languages:

$$B_1 = \{w \in \{0, 1\}^* : w \text{ has odd length}\}, B_2 = \{1^n0^m : n, m \geq 0\}.$$

These have the respective DFAs:
Now we use the product construction on the following two DFAs. This yields the answer below.

Note, we can combine the right most two nodes into one for a DFA with 5 states.

3. (10 points) Recall, for a language \(L \subseteq \Sigma^* \) its complement is the set of strings over \(\Sigma \) not in \(L \), denoted as \(\overline{L} = \{ w \notin L \} \subseteq \Sigma^* \). Let \(A \) be the language above and let \(C = \{ w \in \{0, 1\}^* : w \text{ has even length} \} \). Draw the state diagrams of the DFA of the following language. Hint: use the construction from the book proving regular languages are closed under union.

(a) \(A \cup C \).

(b) \(A \cap C \)

\textbf{solution:} The language for \(C \) is the same as \(\overline{B}_1 \):

We labeled the states in the DFAs for \(C \) and \(A \) from left to right in increasing order (the DFA for \(C \) has start state \(c_0 \), for example).

\textbf{The DFA for} \(A \cup C \) \textbf{is as below}.
4. (10 points) We first review some definitions.

- The concatenation of two languages \(L_1, L_2 \) over \(\Sigma \) is \(L_1 \circ L_2 = \{x_1 x_2 : x_i \in L_i\} \).
- Lastly, the language \(L^* = \{x_1 x_2 \ldots x_k : x_i \in L, k \geq 0\} \).

Let \(A \) and \(B \) be the languages above. Draw the NFA state diagrams of the following languages:

(a) \(\overline{A} \circ B \)
(b) \((\overline{A})^* \circ B \)

solution: The first NFA is:
5. (10 points) In this problem we are going to construct one regular language over alphabet Σ_2 from
another regular language over the alphabet Σ_1. First, let

$$f : \Sigma_1 \cup \{\varepsilon\} \rightarrow \Sigma_2 \cup \{\varepsilon\}$$

be any function that maps the empty string to the empty string $f(\varepsilon) = \varepsilon$. We can extend the function to another function on the sets of strings over these alphabets

$$f^* : \Sigma_1^* \rightarrow \Sigma_2^*$$

by applying the function to each character separately

$$f^*(w) = f^*(x_1x_2 \ldots x_k) = f(x_1)f(x_2) \ldots f(x_k).$$

Here are some examples:

- f^* given by $f : \{a, b, c\} \cup \{\varepsilon\} \rightarrow \{0, 1\} \cup \{\varepsilon\}$ where $f(a) = 0$, $f(b) = 1$, $f(c) = \varepsilon$ maps acb to 01.
- f^* given by $f : \{0, 1\} \cup \{\varepsilon\} \rightarrow \{0, 1\} \cup \{\varepsilon\}$ where $f(1) = 1$, $f(0) = 1$ maps the language B from problem 2 to the language $f^*(B) = \{1^l : l \geq 1\}$.

Now let $f : \Sigma_1 \cup \{\varepsilon\} \rightarrow \Sigma_2 \cup \{\varepsilon\}$ be a function where $f(\varepsilon) = \varepsilon$. Prove that if $L \subset \Sigma_1^*$ is a regular language then its image under f^*, $f^*(L) = \{f^*(w) : w \in L\} \subseteq \Sigma_2^*$, is a regular language in Σ_2^*. Hint: show how, starting from a DFA for L, you can construct an NFA for $f^*(L)$. You can use the theorem from class saying that if an NFA recognizes a language then it is regular.

solution: Recall, a language is regular if and only if there exists an NFA or DFA that accepts it.

We prove this by applying the function to the edges of a DFA/NFA for L over Σ_1. Call this DFA “D.” Apply the function $f(\cdot)$ to the edges of D to form an NFA. Call this NFA “N.”

Say $w = x_1 \ldots x_n \in L$. Then, the path in D, the DFA for L, reading w ends in an accept state.

By following the same edges on the NFA N, we get a path representing the string

$$f^*(w) = f(x_1) \ldots f(x_2)$$

ending in an accept state for the NFA!

Therefore, the NFA accepts $f^*(L)$. Now, we must make sure the NFA accepts no strings outside of $f^*(L)$. Say we pick out a path from the start state to the accept state in the NFA. This path represents a string, $y_1 \ldots y_m$. However, this string is a string of characters from the function:

$$y_i = f(x_i).$$

Looking back at the DFA for L, we have the same path! Therefore $y_1 \ldots y_m \in f^*(L)$ and $x_1 \ldots x_m \in L$.

For completeness, we give the DFA to NFA transformation in terms of their exact definitions.

The DFA $D = (Q, \Sigma_1, \delta, q_0, F)$ is transformed to the NFA $N = (Q, \Sigma_2, \delta_2, q_0, F)$. All that is left is to do is to define the function $\delta_2 : Q \times \Sigma_2 \rightarrow P(Q)$. This is $\delta_2(q, y) = \{\delta(q, x) : y = f(x)\}$.