Photometric Stereo

Computer Vision I
CSE 252A
Lecture 4

Announcements
• Homework 0 is due today by 11:59 PM
• Homework 1 will be assigned today
 – Due Wed, Oct 19, 11:59 PM
• Reading:
 – Section 2.2.4: Photometric Stereo
 • Shape from Multiple Shaded Images

Shading reveals 3-D surface geometry

Two shape-from-X methods that use shading
• Shape-from-shading: Use just one image to recover shape. Requires knowledge of light source direction and BRDF everywhere. Too restrictive to be useful.

• Photometric stereo: Single viewpoint, multiple images under different lighting.

Photometric Stereo Rigs:
One viewpoint, changing lighting

An example of photometric stereo
surface (albedo textured mapped on surface)
albedo (surface normals)
Photometric stereo

- Single viewpoint, multiple images under different lighting.
 1. Arbitrary known BRDF, known lighting
 2. Lambertian BRDF, known lighting
 3. Lambertian BRDF, unknown lighting.

I. Photometric Stereo: General BRDF and Reflectance Map

BRDF

- Bi-directional Reflectance Distribution Function
 \[\rho(\theta_{in}, \phi_{in} ; \theta_{out}, \phi_{out}) \]
- Function of
 - Incoming light direction: \(\theta_{in}, \phi_{in} \)
 - Outgoing light direction: \(\theta_{out}, \phi_{out} \)
- Ratio of incident irradiance to emitted radiance

Coordinate system

Gradient Space (p,q)

Image Formation

For a given point A on the surface, the image irradiance \(E(x,y) \) is a function of

1. The BRDF at \(A \)
2. The surface normal at \(A \)
3. The direction of the light source
Reflectance Map

Let the BRDF be the same at all points on the surface, and let the light direction s be a constant.
1. Then image irradiance is a function of only the direction of the surface normal.
2. In gradient space, we have $E(p,q)$.

Example Reflectance Map: Lambertian surface

For lighting from front

Example Reflectance Map:
Lambertian surface

What does the intensity (Irradiance) of one pixel in one image tell us?
It constrains the surface normal projecting to that point to a curve

Reflectance Map of Lambertian Surface

Two Light Sources
Two reflectance maps

A third image would disambiguate match

Three Source Photometric stereo:
Step 1

Offline:
Using source directions & BRDF, construct reflectance map for each light source direction. $R_1(p,q)$, $R_2(p,q)$, $R_3(p,q)$

Online:
1. Acquire three images with known light source directions. $E_1(x,y)$, $E_2(x,y)$, $E_3(x,y)$
2. For each pixel location (x,y), find (p,q) as the intersection of the three curves
 $R_1(p,q)=E_1(x,y)$
 $R_2(p,q)=E_2(x,y)$
 $R_3(p,q)=E_3(x,y)$
3. This is the surface normal at pixel (x,y). Over image, the normal field is estimated
Normal Field

Plastic Baby Doll: Normal Field

Next step:
Go from normal field to surface

Recovering the surface \(f(x,y) \)

Many methods: Simplest approach
1. From estimate \(\mathbf{n} = (n_x, n_y, n_z) \), \(p = n_x/n_z \), \(q = n_y/n_z \)
2. Integrate \(p = df/dx \) along a row \((x,0)\) to get \(f(x,0) \)
3. Then integrate \(q = df/dy \) along each column starting with value of the first row

Integrability. If \(f(x,y) \) is the height function, we expect that
\[
\frac{\partial f}{\partial y} \frac{\partial}{\partial x} = \frac{\partial}{\partial \bar{y}} \frac{\partial f}{\partial \bar{x}}
\]

In terms of estimated gradient space \((p,q)\), this means:
\[
\hat{p} = \frac{\partial q}{\partial \bar{x}} \quad \hat{q} = \frac{\partial p}{\partial \bar{y}}
\]

But since \(p \) and \(q \) were estimated independently at each point as intersection of curves on three reflectance maps, equality is not going to exactly hold

What might go wrong?

• Height \(z(x,y) \) is obtained by integration along a curve from \((x_0, y_0)\):
 \[
 z(x,y) = z(x_0,y_0) + \int_{(x_0,y_0)}^{(x,y)} (pdx + qdy)
 \]
 • If one integrates the derivative field along any closed curve, one expects to get back to the starting value.
 • Might not happen because of noisy estimates of \((p,q)\)
Horn’s Method

Robot Vision, B.K.P. Horn, 1986

- Formulate estimation of surface height $z(x,y)$ from gradient field by minimizing cost functional:
 \[
 \int_{\text{Image}} (z_x - p)^2 + (z_y - q)^2 \, dx \, dy
 \]
 where (p,q) are estimated components of the gradient while z_x and z_y are partial derivatives of best fit surface.
- Solved using calculus of variations – iterative updating
- $z(x,y)$ can be discrete or represented in terms of basis functions.
- Integrability is naturally satisfied.

II. Photometric Stereo:
Lambertian Surface, Known Lighting

Lambertian Surface

At image location (u,v), the intensity of a pixel $x(u,v)$ is:

\[
e(u,v) = [a(u,v) \hat{n}(u,v)] \cdot [s_0 \ s] = b(u,v) \cdot s
\]

where
- $a(u,v)$ is the albedo of the surface projecting to (u,v).
- $\hat{n}(u,v)$ is the direction of the surface normal.
- s_0 is the light source intensity.
- s is the direction to the light source.

If the light sources s_1, s_2, and s_3 are known, then we can recover b from as few as three images. (Photometric Stereo: Silver 80, Woodham 81).

\[
[e_1 \ e_2 \ e_3] = b^T[s_1 \ s_2 \ s_3]
\]

- i.e., we measure e_1, e_2, and e_3 and we know s_1, s_2, and s_3. We can then solve for b by solving a linear system.
- Normal $\hat{n} = b/|b|$ and albedo $a = |b|$

What if we have more than 3 Images?
Linear Least Squares

\[
[e_1 \ e_2 \ ... \ e_n] = \hat{b}^T[s_1 \ s_2 \ ... \ s_n]
\]

Let the residual be

\[
r = e - \hat{b}^T S b
\]

Squaring this:

\[
r^T r = (e - \hat{b}^T S b)^T (e - \hat{b}^T S b) = e^T e - 2b^T S^T e + b^T S^T S b
\]

Zero derivative is a necessary condition for a minimum, or

\[
2S^T e - 2S^T S b = 0; \quad -2S^T e + 2S^T S b = 0;
\]

Solving for b gives

\[
b = (S^T S)^{-1} S^T e
\]
Recovered albedo

Recovered normal field

Surface recovered by integration

An example of photometric stereo

Next Lecture

- Illumination cones
 - III. Photometric Stereo with unknown lighting and Lambertian surfaces
- Reading:
 - What Is the Set of Images of an Object under All Possible Illumination Conditions?