Visual Tracking

Computer Vision I
CSE 252A
Lecture 14

Announcements
• Homework 3 is due November 21, 11:59 PM
• Reading:
 – Chapter 11: Tracking

Main Challenges
1. 3D pose variation
2. Target occlusion
3. Illumination variation
4. Camera jitter
5. Expression variation
etc.

[Ho, Lee, Kriegman]

Main tracking notions
• State: usually a finite number of parameters (a vector) that characterizes the “state” (e.g., location, size, pose, deformation) of the object being tracked.
• Dynamics: How does the state change over time? How is that changed constrained?
• Representation: How do you represent the object being tracked?
• Prediction: Given the state at time \(t-1 \), what is an estimate of the state at time \(t \)?
• Correction: Given the predicted state at time \(t \) and a measurement at time \(t \), update the state.
• Initialization: What is the state at time \(t = 0 \)?

What is the state?
• 2D image location \(\Phi=(u,v) \)
• Image location + scale \(\Phi=(u,v,s) \)
• Image location + scale + orientation \(\Phi=(u,v,s,\theta) \)
• Affine transformation
• 3D pose
• 3D pose plus internal shape parameters (some may be discrete)
 – e.g., for a face, 3D pose + facial expression using FACS + eye state (open/closed)
• Collections of control points specifying a spline
• Above, but for multiple objects (e.g., tracking a formation of airplanes)
• Augment above with temporal derivatives \((\dot{\Phi}, \ddot{\Phi}) \)

State Examples
– Object is ball, state is 3D position + velocity, measurements are derived from stereo pairs
– Object is person, state is body configuration, measurements are derived from video frames
– What is state here?
Example: Blob Tracker
- From input image \(I(u,v) \) at time \(t \), create a binary image by applying a function \(f(I(u,v)) \)
- Clean up binary image using morphological operators
- Perform connected component exploration to find “blobs” (i.e., connected regions)
- Compute their moments (mean and covariance of region coordinates) and use as state
- Using state estimate from time \(t-1 \) and perform “data association” to identify state at time \(t \)

Blob Tracking in IR Images
- Threshold about body temperature
- Connected component analysis
- Position, scale, orientation of regions
- Temporal coherence

Tracking: Probabilistic framework
- Very general model
 - Assume there are moving objects that have an underlying state \(X \)
 - There are observations (measurements) \(Y \), some of which are functions of this state
 - Over time
 - The state changes: \(X_{t-1}, X_t, X_{t+1} \)
 - There are new observations: \(Y_{t-1}, Y_t, Y_{t+1} \)

Tracking State
- Instead of “knowing state” at each instant, we treat the state as random variables \(X_t \) characterized by a pdf \(P(X_t) \)
 - Over time
 - The state changes: \(X_{t-1}, X_t, X_{t+1} \)
 - There are new observations: \(Y_{t-1}, Y_t, Y_{t+1} \)

Three main steps
- **Prediction**: we have seen \(y_0, \ldots, y_{t-1} \) — what state does this set of measurements predict for the \(t \)th frame? to solve this problem, we need to obtain a representation of \(P(X_t | Y_0, \ldots, Y_{t-1}) \).
- **Data association**: Some of the measurements obtained from the \(t \)th frame may tell us about the object’s state. Typically, we use \(P(X_t | Y_0, \ldots, Y_{t-1}) = y_t \) to identify these measurements.
- **Correction**: note that we have \(y_t \) — the relevant measurements — we need to compute a representation of \(P(X_t | Y_0, \ldots, Y_t) = y_t \).

We can try to express these conditional distributions parametrically, sample the distribution, or estimate the mode.

Simplifying Assumptions
- **Only the immediate past matters**: formally, we require
 \[
P(X_t | X_{t-1}, \ldots, X_{t-1}) = P(X_t | X_{t-1})
 \]
- **Measurements depend only on the current state**: we assume that \(Y_t \) is conditionally independent of all other measurements given \(X_t \). This means that
 \[
P(Y_t | X_0, \ldots, Y_{t-1}, X_t) = P(Y_t | X_t)
 \]
Tracking as induction

- Assume data association is done
 - Sometimes challenging in cluttered scenes. See work by Christopher Rasmussen on Joint Probabilistic Data Association Filters (JPDAF).
- Do correction for frame $i=0$
- Assume we have corrected estimate for frame i
 - We can predict the estimate for frame $i+1$, correction for frame $i+1$

Induction step: State Prediction

Given $P(x_{i-1} | y_0, \ldots, y_{i-1})$.

Prediction

Prediction involves representing

$$P(x_i | y_0, \ldots, y_{i-1})$$

Our independence assumptions make it possible to write

$$P(x_i | y_0, \ldots, y_{i-1}) = \int P(x_i | x_{i-1})P(x_{i-1} | y_0, \ldots, y_{i-1})dx_{i-1}$$

Induction step: State Correction

In prediction, we estimated the state X_i given the measurements up to $i-1$. Now we get the measure at time i called y_i.

Correction

Correction involves obtaining a representation of

$$P(x_i | y_0, \ldots, y_i)$$

or our independence assumptions make it possible to write

$$P(x_i | y_0, \ldots, y_i) = \int P(x_i | x_{i-1})P(x_{i-1} | y_0, \ldots, y_i)dx_{i-1}$$

Base case

$P(y | x)$ is our observation model. For example, $P(y | x)$ might be a Gaussian with mean x.

Firstly, we assume that we have $P(x_0)$

And, we make a measurement y_0

$$P(x_0 | y_0) = \frac{P(y_0 | x_0)P(x_0)}{P(y_0)} = \int P(y_0 | x_0)P(x_0 | dx_0) \propto P(y_0 | x_0)P(x_0)$$

How is this formulation used

1. It’s ignored. At each time instant, the state is estimated (perhaps a maximum likelihood estimate or something non-probabilistic).
2. The conditional distributions are represented by some convenient parametric form (e.g., Gaussian).
3. The PDFs are represented non-parametrically, and sampling techniques are used.

Linear dynamic models

- Use notation \sim to mean “has the pdf of,” $N(a, B)$ is a normal distribution with mean a and covariance B.
- A linear dynamic model has the form

$$x_i \sim N(D_{i-1}x_{i-1}; \Sigma_d)$$

$$y_i \sim N(Mx_i; \Sigma_m)$$
Examples

- Points moving with constant velocity
- Points moving with constant acceleration
- Periodic motion
- Etc.

Points moving with constant velocity

- We have
 \[
 \begin{align*}
 u_i &= u_{i-1} + \Delta v_{i-1} + \xi_i \\
 v_i &= v_{i-1} + \gamma_i \\
 a_i &= a_{i-1} + \epsilon_i
 \end{align*}
 \]
 - (the Greek letters denote noise terms)
- Stack \((u, v)\) into a single state vector

The Kalman Filter

- Key ideas:
 - Linear models interact uniquely well with Gaussian noise
 - Make the prior Gaussian, everything else Gaussian and the calculations are easy
 - Gaussians are really easy to represent
 - mean vector
 - covariance matrix

Points moving with constant acceleration

- We have
 \[
 \begin{align*}
 u_i &= u_{i-1} + \Delta v_{i-1} + \xi_i \\
 v_i &= v_{i-1} + \gamma_i \\
 a_i &= a_{i-1} + \epsilon_i
 \end{align*}
 \]
 - (the Greek letters denote noise terms)
- Stack \((u, v)\) into a single state vector

The Kalman Filter in 1D

- Dynamic Model
 \[
 x_i \sim N(\mu_{i-1}, \sigma_i^2)
 \]
 \[
 y_i \sim N(\mu_i, \sigma_i^2)
 \]
- Notation

 - Corrected mean
 - Predicted mean

 - Mean of \(P(X_i|y_0, \ldots, y_i)\) as \(\bar{X}_i\)
 - Mean of \(P(X_i|y_0, \ldots, y_{i-1})\) as \(\hat{X}_i\)
 - Standard deviation of \(P(X_i|y_0, \ldots, y_i)\) as \(\sigma_i^2\)
 - Standard deviation of \(P(X_i|y_0, \ldots, y_{i-1})\) as \(\sigma_i^2\)

Prediction for 1-D Kalman filter

- The new state is obtained by
 - multiplying old state by known constant
 - adding zero-mean noise
- Therefore, predicted mean for new state is
 - constant times mean of old state
- Predicted variance is
 - sum of constant\(^2\) times old state variance and noise variance

Because:

- Old state is normal random variable,
- Multiplying normal random variable by constant implies
 - mean is multiplied by a constant
 - variance is multiplied by square of constant
- Adding zero mean noise adds zero to the mean,
- Adding random variables adds variance
Correction for 1D Kalman filter

- Notice:
 - if measurement noise is small, then we rely mainly on the measurement
 - if measurement noise is large, then we rely mainly on the prediction

\[
x^1 = \left(\frac{\sigma_{x,0}^2 + m_0(\sigma_i^2)^2}{\sigma_{x,0}^2 + m_i(\sigma_i^2)^2} \right)^{\frac{1}{2}}
\]

\[
\sigma^1 = \sqrt{\frac{\sigma_{x,0}^4 + m_0(\sigma_i^2)^4}{\sigma_{x,0}^4 + m_i(\sigma_i^2)^4}}
\]

Multivariate Kalman Filter

- Notice:
 - if measurement noise is small, then we rely mainly on the measurement
 - if measurement noise is large, then we rely mainly on the prediction

Another Approach: Measurement Generation

Sample from \(p(X) \)
Evaluate \(p(I|X) \) at samples
Keep high-scoring samples
Ascend gradient & pick exemplars

Tracking Modalities
(Define the features (observations, measurements) \(Y_i \))

- Color
 - Histogram [Birchfield 1998; Bradski 1998]
 - Volume [Wren et al., 1993; Bogler, 1997; Durrell, 1998]
- Shape
 - Deformable curve [Kass et al. 1988]
 - Template [Blake et al., 1993; Birchfield 1998]
 - Example-based [Cootes et al., 1993; Birchfield 1998]
- Appearance
 - Correlation [Lucas & Kanade, 1981; Shi & Tomasi, 1994]
 - Photometric variation [Hager & Belhumeur, 1998]
 - Outliers [Black et al., 1998; Hager & Belhumeur, 1998]
 - Nonrigidity [Black et al., 1998; Sclaroff & Isidoro, 1998]
- Motion
 - Background model [Wren et al., 1995; Rosales & Sclaroff, 1999; Stauffer & Grimson, 1999]
 - Optical flow [Cutler & Turk]
 - Epipolar motion [Ishikawa & Aoyagi, 1996; I. A. & Anandan, 1998]
- Stereo
 - Blob correlation [Azarbayejani & Pentland, 1996]
 - Disparity map [Kanade et al., 1996; Konolige, 1997; Durrell et al., 1998]

Color Blob tracking

- Color-based tracker gets lost on white knight: Same Color
Snakes: Active Contours

- Contour C: continuous curve on smooth surface in \mathbb{R}^3
- Snake S: projection of C to image
- Curve types
 - Edge between regions on surface with contrasting properties
 - Line that contrasts with surface properties on both side
 - Silhouette of surface against contrasting background
- General Algorithm:
 - Perform edge detection
 - Fit parametric or non-parametric curve to data

Snakes: Basic Approach

- Parameterize a closed contour
 $q = (q_0^e - q_0^g, q_1^e - q_1^g)$
- Given a predicted state q, search radially for edges
- Solve a least squares problem for new state

Tracker Composition: Only Shape (Snakes)

- Geometry-based tracker gets lost on black pawn: Same shape

Tracker Composition: Color and Shape

- Combining Trackers \rightarrow Robustness

Visual Tracking using regions

- Variability model: $l_t = g(l_0, p_t)$
- Incremental Estimation: From l_0, l_{t+1} and p_t compute Δp_{t+1}
- $||l_0 - g(l_{t+1}, p_{t+1})||^2 \rightarrow \text{min}$
Tracking using Textured Regions

- Mean intensity difference between I and affine warp of template image [Shi & Tomasi, 1994]

\[
\psi_{\text{mean}}(x,y) = \sum_{x \in A} (I(x,y) - I_c(x,y))^2
\]

\[|I_x - I_c|
\]

Template I_t

Tracked state I_c

Template tracking: Planar Case

Planar Object \rightarrow Affine motion model: $u'_i = A u_i + d$

Warping

\[I_t = g(p, I_0) \]

Hager/Toyama: Tracking Cycle

- Prediction
 - Prior states predict new appearance
- Image warping
 - Generate a "normalized view"
- Model inverse
 - Compute error from nominal
- State integration
 - Apply correction to state

XVision: A tracking System

Face

Eyes

Mouth

Composition of Primitive Trackers

Next Lectures

- Recognition, detection, and classification
- Reading:
 - Chapter 15: Learning to Classify
 - Chapter 16: Classifying Images
 - Chapter 17: Detecting Objects in Images