General questions to ask about algorithms

1) **What** problem are we solving? SPECIFICATION

2) **How** do we solve the problem? ALGORITHM DESCRIPTION

3) **Why** do these steps solve the problem? CORRECTNESS

4) **When** do we get an answer? RUNNING TIME PERFORMANCE
Counting comparisons: WHEN

Measure …

Time

Number of operations

For selection sort (MinSort), how many times do we have to compare the values of some pair of list elements?
procedure selection sort(a_1, a_2, ..., a_n: real numbers with n >=2)
for i := 1 to n-1
 m := i
 for j:= i+1 to n
 if (a_j < a_m) then m := j
 interchange a_i and a_m

{ a_1, ..., a_n is in increasing order}

For each value of i, compare (n-i) pairs of elements.

Sum of positive integers up to (n-1)

\[(n-1) + (n-2) + \ldots + (1) = n(n-1)/2 \]
Counting operations

When do we get an answer? RUNNING TIME PERFORMANCE

Counting number of times list elements are compared
Runtime performance

Algorithm: problem solving strategy as a sequence of steps

Examples of steps
- Comparing list elements (which is larger?)
- Accessing a position in a list (probe for value)
- Arithmetic operation (+, -, *, …)
- etc.

"Single step" depends on context
Runtime performance

How long does a "single step" take?

Some factors
- Hardware
- Software

Discuss & list the factors that could impact how long a single step takes
How long does a "single step" take?

Some factors
- Hardware (CPU, climate, cache …)
- Software (programming language, compiler)
Runtime performance

The time our program takes will depend on

- Number of steps the algorithm requires
- Time for each of these steps on our system
- Input (size and ???)
Runtime performance

Goal:

Estimate time as a function of the size of the input, n

Ignore what we can't control

Focus on how time scales for large inputs
Rate of growth

Focus on how time scales for large inputs

Ignore what we can't control

Which of these functions have the "same" rate of growth?

A. All of them
B. 2^n and n^2
C. n^2 and $3n^2$
D. They're all different
Focus on how time scales for large inputs

Ignore what we can't control

For functions $f(n) : \mathbb{N} \to \mathbb{R}, g(n) : \mathbb{N} \to \mathbb{R}$ we say

$$f(n) \in O(g(n))$$

to mean there are constants, C and k such that

$$|f(n)| \leq C|g(n)|$$

for all $n > k$.

Rosen p. 205
Ignore what we can't control

Focus on how time scales for large inputs

For functions $f(n) : \mathbb{N} \rightarrow \mathbb{R}$, $g(n) : \mathbb{N} \rightarrow \mathbb{R}$ we say

$\quad \quad f(n) \in O(g(n))$

...to mean there are constants, C and k such that

$\quad \quad |f(n)| \leq C|g(n)|$ \quad \quad \text{for all } n > k.$

Rosen p. 205
Definition of Big O

For functions $f(n) : \mathbb{N} \to \mathbb{R}, g(n) : \mathbb{N} \to \mathbb{R}$ we say

$$f(n) \in O(g(n))$$

to mean there are constants, C and k such that $|f(n)| \leq C|g(n)|$ for all $n > k$.

Example:

$$f(n) = 3n^2 + 2n \quad g(n) = n^2$$

What constants can we use to prove that $f(n) \in O(g(n))$?

A. $C = 1/3$, $k = 2$

B. $C = 5$, $k = 1$

C. $C = 10$, $k = 2$

D. None: $f(n)$ isn't big O of $g(n)$.
"f(n) is big O of g(n)"

\[f(n) \in O(g(n)) \]

A family of functions which grow no faster than \(g(n) \)

What functions are in the family \(O(n^2) \)?

\[
\begin{align*}
 f(n) &= 3n^2 + 2n < \text{prev ex.} \\
 f(n) &= 3n^2 + 2n + 1 \\
 f(n) &= 1,000,000n^2
\end{align*}
\]
"f(n) is big O of g(n)"

\[f(n) \in O(g(n)) \]

- The value of \(f(n) \) might always be bigger than the value of \(g(n) \).
- \(O(g(n)) \) contains functions that grow strictly slower than \(g(n) \).
Is \(f(n) \) big O of \(g(n) \)? i.e. is \(f(n) \in O(g(n)) \)?

Approach 1: Look for constants \(C \) and \(k \).

Approach 2: Use properties

- **Domination** If \(f(n) \leq g(n) \) for all \(n \) then \(f(n) \) is big-O of \(g(n) \).
- **Transitivity** If \(f(n) \) is big-O of \(g(n) \), and \(g(n) \) is big-O of \(h(n) \), then \(f(n) \) is big-O of \(h(n) \).
- **Additivity/ Multiplicativity** If \(f(n) \) is big-O of \(g(n) \), and if \(h(n) \) is nonnegative, then \(f(n) \times h(n) \) is big-O of \(g(n) \times h(n) \) … where \(\times \) is either addition or multiplication.
- **Sum is maximum** \(f(n) + g(n) \) is big-O of the max(\(f(n) \), \(g(n) \))
- **Ignoring constants** For any constant \(c \), \(cf(n) \) is big-O of \(f(n) \)

Rosen p. 210-213
Is \(f(n) \) big \(O \) of \(g(n) \)? i.e. is \(f(n) \in O(g(n)) \)?

Approach 1: Look for constants \(C \) and \(k \).

Approach 2: Use properties

- **Domination**
 If \(f(n) \leq g(n) \) for all \(n \), then \(f(n) \) is big-\(O \) of \(g(n) \).

- **Transitivity**
 If \(f(n) \) is big-\(O \) of \(g(n) \), and \(g(n) \) is big-\(O \) of \(h(n) \), then \(f(n) \) is big-\(O \) of \(h(n) \).

- **Additivity/Multiplicativity**
 If \(f(n) \) is big-\(O \) of \(g(n) \), and if \(h(n) \) is nonnegative, then \(f(n) \cdot h(n) \) is big-\(O \) of \(g(n) \cdot h(n) \). … where * is addition or multiplication.

- **Sum is maximum**
 \(f(n) + g(n) \) is big-\(O \) of the max\((f(n), g(n)) \).

- **Ignoring constants**
 for any constant \(c \), \(cf(n) \) is big-\(O \) of \(f(n) \).

Rosen p. 210-213
Is $f(n)$ big O of $g(n)$? i.e. is $f(n) \in O(g(n))$?

Approach 3. The limit method. Consider the limit

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}.$$

I. If this limit exists and is 0: then $f(n)$ grows strictly slower than $g(n)$.

II. If this limit exists and is a constant $c > 0$: then $f(n)$, $g(n)$, grow at the same rate.

III. If the limit tends to infinity: then $f(n)$ grows strictly faster than $g(n)$.

IV. if the limit doesn't exist for a different reason … use another approach!

In which cases can we conclude $f(n) \in O(g(n))$?

A. I, II, III
B. I, III
C. I, II
D. None of the above

Inconclusive
Other asymptotic classes

\[f(n) \in O(g(n)) \]

means there are constants, \(C \) and \(k \) such that \(|f(n)| \leq C|g(n)| \) for all \(n > k \).

\[f(n) \in \Omega(g(n)) \]

means \(g(n) \in O(f(n)) \).

\[f(n) \in \Theta(g(n)) \]

means \(f(n) \in O(g(n)) \) and \(g(n) \in O(f(n)) \).

What functions are in the family \(\Theta(n^2) \)?
Selection Sort (MinSort) Performance

Rosen page 210, example 5

Number of comparisons of list elements

\[(n-1) + (n-2) + \ldots + (1) = \frac{n(n-1)}{2}\]

Sum of positive integers up to \((n-1)\)

Rewrite this formula in order notation:

A. \(O(n)\)
B. \(O(n(n-1))\)
C. \(O(n^2)\)
D. \(O(1/2)\)
E. None of the above
Linear Search: HOW

Starting at the beginning of the list, compare items one by one with x until find it or reach the end

```
procedure linear search (x: integer, a_1, a_2, ..., a_n: distinct integers )
i := 1
while (i <= n and x ≠ a_i)
  i := i+1
if i <=n then location := i
else location := 0
return location

{ location is the subscript of the term that equals x, or is 0 if x is not found }```
The time it takes to find \( x \) (or determine it is not present) depends on the number of *probes*, that is the number of list entries we have to retrieve and compare to \( x \).

**How many probes do we make when doing Linear Search on a list of size \( n \):**

- if \( x \) happens to equal the *first* element in the list?
- if \( x \) happens to equal the *last* element in the list?
- if \( x \) happens to equal an element somewhere in the *middle* of the list?
- if \( x \) *doesn't equal any* element in the list?
Best case: 1 probe  
Target appears first

Worst case: n probes  
Target appears last or not at all

Average case: n/2 probes  
Target appears in the middle, (expect to have to search about half of the array ... more on expected value later in the course)

Running time depends on more than size of the input!

Rosen p. 220
procedure binary search (x: integer, a₁, a₂, ..., aₙ: increasing integers )
i := 1
j := n
while i<j
    m := floor( (i+j)/2 )
    if x > aₘ  then i := m+1
    else j := m
if x=aᵢ  then location := i
else location := 0
return location

{ location is the subscript of the term that equals x, or is 0 if x is not found }
Number of comparisons (probes) depends on number of iterations of loop, hence size of set.

<table>
<thead>
<tr>
<th>After … iterations of loop</th>
<th>(Max) size of list &quot;in play&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>n/2</td>
</tr>
<tr>
<td>2</td>
<td>n/4</td>
</tr>
<tr>
<td>3</td>
<td>n/8</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>??</td>
<td>1</td>
</tr>
</tbody>
</table>
How fast is Binary Search: WHEN

Rosen page 220, example 3

Number of comparisons (probes) depends on number of iterations of loop, hence size of set.

<table>
<thead>
<tr>
<th>After … iterations of loop</th>
<th>(Max) size of list &quot;in play&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>n/2</td>
</tr>
<tr>
<td>2</td>
<td>n/4</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>ceil(log₂ n)</td>
</tr>
</tbody>
</table>

Rewrite this formula in order notation:

A. Θ(log n)
B. Θ(log n + 1)
C. Θ(n)
D. Θ(log₁₀ n)
E. None of the above
Comparing linear search and binary search

Rosen pages 220-221

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>None</td>
<td>Sorted list</td>
</tr>
<tr>
<td># probes in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* best case</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$or $\Theta(\log n)$</td>
</tr>
<tr>
<td>* worst case</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>* average case</td>
<td>$\Theta(n)$</td>
<td><strong>??</strong></td>
</tr>
</tbody>
</table>

Best case analysis depends on whether we check if midpoint agrees with target right away or wait until list size gets to 1.
## Comparing linear search and binary search

Rosen pages 220-221

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td># probes in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* best case</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$ or $\Theta(\log n)$</td>
</tr>
<tr>
<td>* worst case</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>* average case</td>
<td>$\Theta(n)$</td>
<td>??</td>
</tr>
</tbody>
</table>
Comparing linear search and binary search

Rosen pages 220-221

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>None</td>
<td>Sorted list</td>
</tr>
<tr>
<td># probes in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* best case</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$ or $\Theta(\log n)$</td>
</tr>
<tr>
<td>* worst case</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>* average case</td>
<td>$\Theta(n)$</td>
<td>??</td>
</tr>
</tbody>
</table>

Is it worth it to sort our list first?
Announcements

HW1 due Sunday 10pm
One submission per group.

Need help? Office Hours!
See calendar on website.