Announcements

HW
- HW6 due tomorrow
- HW7 due Sunday

No class Friday

Midterm
- Weds 11/16
- Practice Exam Review Sessions
 See website!

Office Hours
- Mine are Friday 10-12 this week (no Saturday.)
- Lots on the course calendar!
Goal: encode a length n binary string that we know has k ones (and $n-k$ zeros).

How would you represent such a string with $n-1$ bits? Can we do better?

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ?

There's a 1! What's its position?

Output:

<table>
<thead>
<tr>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ? Output: 0100

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.

- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 01000

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 011000000010$?

Output: 01000

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.

- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example \(n=12, \ k=3, \text{ window size } n/k = 4. \)

How do we encode \(s = 011000000010 \)?

Output: \(0100011 \)

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 0100011

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010__ ? Output: 01000110.

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000110.

Compressed to 8 bits!

But can we recover the original string? Decoding …
Encoding: Fixed Density Strings

With $n=12$, $k=3$, window size $n/k = 4$. **Output:** `01000110`

Can be parsed as the (intended) input: $s = 011000000010$?

But also:

01: one in position 1
0: no ones
00: one in position 0
11: one in position 3
0: no ones

$s' = 010000100010$

Problem: two different inputs with same output. Can't uniquely decode.
A **valid compression algorithm** must:

- Have outputs of shorter (or same) length as input.
- Be uniquely decodable.
Can we modify this algorithm to get unique decodability?

Idea: use *marker bit* to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example \(n=12, k=3 \), window size \(n/k = 4 \).

How do we encode \(s = 011000000010 \) ? Output:
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output:
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

What output corresponds to these first few bits?
A. 0
B. 1
C. 01
D. 01
E. None of the above.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.

- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = \textcolor{red}{01}1000000010 ? Output: 101

Interpret next bits as position of 1; this position is 01
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ? Output: 101
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ? Output: 101

A. 101000110 C. 1011000110
B. 1011000110 D. 10110000111
Idea: use marker bit to indicate when to interpret output as a position.

- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 01\underline{1000000010}$? Output: 101100

Interpret next bits as position of 1; this position is 00
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101100
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 011\underline{000}000010$? Output: 1011000

No 1s in this window.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example \(n=12, k=3, \text{ window size } n/k = 4. \)

How do we encode \(s = 011000000010 \) ? Output: 1011000111

Interpret next bits as position of 1; this position is 11
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 01100000001$? Output: 1011000111
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010__ ? Output: 10110001110

No 1s in this window.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000001_? Output: 10110001110

Compare to previous output: 01000110

Output uses more bits than last time. Any redundancies?
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 10110001110

Compare to previous output: 01000110

* Since k is known, after we see the last 1, we can stop since the rest are 0s. *
procedure WindowEncode (input: $b_1 b_2 \ldots b_n$, with exactly k ones and $n-k$ zeros)

1. $w := \text{floor} \ (n/k)$
2. count := 0
3. location := 1
4. While count < k:
5. If there is a 1 in the window starting at current location
6. Output 1 as a marker, then output position of first 1 in window.
7. Increment count.
8. Update location to immediately after first 1 in this window.
9. Else
10. Output 0.
11. Update location to next index after current window.

Uniquely decodable?
procedure WindowDecode (input: $x_1x_2...x_m$, target is exactly k ones and $n-k$ zeros)

1. $w := \text{floor} \left(\frac{n}{k} \right)$
2. $b := \text{floor} \left(\log_2(w) \right)$
3. $s := \text{empty string}$
4. $i := 0$
5. While $i < m$
6. If $x_i = 0$
7. $s += 0...0$ (j times)
8. $i += 1$
9. Else
10. $p := \text{decimal value of the bits} \ x_{i+1}...x_{i+b}$
11. $s += 0...0$ (p times)
12. $s += 1$
13. $i := i+b+1$
14. If $\text{length}(s) < n$
15. $s += 0...0$ (n-length(s) times)
16. Output s.
Encoding/Decoding: Fixed Density Strings

Correctness?

\[E(s) = \text{result of encoding string } s \text{ of length } n \text{ with } k \text{ 1s, using WindowEncode.} \]

\[D(t) = \text{result of decoding string } t \text{ to create a string of length } n \text{ with } k \text{ 1s, using WindowDecode.} \]

Well-defined functions?
Inverses?

Can show that for each \(s \), \(D(E(s)) = s \).
Proof uses Strong Induction!
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

How long is \(E(s) \)?

A. \(n-1 \)
B. \(\log_2(n/k) \)
C. Depends on where 1s are located in \(s \).
D. None of the above.
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

For which strings is E(s) shortest?

A. More 1s toward the beginning.
B. More 1s toward the end.
C. 1s spread about evenly throughout.
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

Best case: 1s toward the beginning of the string. \(E(s) \) has
- One bit for each 1 in \(s \) to indicate that next bits denote positions in window.
- \(\log_2(n/k) \) bits for each 1 in \(s \) to specify position of that 1 in a window.
- \(k \) such ones.
- No bits representing empty windows because all 0s are either "caught" in windows with 1s or after the last 1.

Total \(|E(s)| = k \log_2(n/k) + k \)
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case: 1s toward the end of the string. $E(s)$ has
- Some bits for empty windows since there are no 1s in first several windows.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

What's an upper bound on the number of these bits?

A. n
B. $n-k$
C. 1
D. k
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

Worst case: 1s toward the end of the string. \(E(s) \) has
- At most \(k \) bits for empty windows since at most \(k \) nonoverlapping windows of length \(n/k \) will fit in a string of length \(n \).
- One bit for each 1 in \(s \) to indicate that next bits denote positions in window.
- \(\log_2(n/k) \) bits for each 1 in \(s \) to specify position of that 1 in a window.
- \(k \) such ones.

Total \(|E(s)| \leq k \log_2(n/k) + 2k\)
Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

\[k \log_2(n/k) + k \leq |E(s)| \leq k \log_2(n/k) + 2k \]

Using this inequality, there are at most ____ length n strings with k 1s.

A. 2^n
B. n
C. $(n/k)^2$
D. $(n/k)^k$
E. None of the above.

See next slide.
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{k \log_2(n/k) + 2k}$ many such strings.
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{(k \log(n/k)+2k)}$ many such strings.

\[
2^{(k \log(n/k)+2k)} = 2^{(k \log(n/k))} \cdot 2^{(2k)}
\]

\[
= \left(2^{(\log(n/k))}\right)^k \cdot 2^{(2k)}
\]

\[
= (n/k)^k \cdot 4^k = (4n/k)^k
\]
Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s. Given \(|E(s)| \leq k \log_2(n/k) + 2k \), we need at most \(k \log_2(n/k) + 2k \) bits to represent all length \(n \) binary strings with \(k \) 1s. Hence, there are at most \(2^{2(k \log(n/k) + 2k)} \) many such strings.

\[
2^{(k \log(n/k) + 2k)} = 2^{(k \log(n/k))} \cdot 2^{(2k)}
\]

\[
= \left(2^{(\log(n/k))}\right)^k \cdot 2^{(2k)}
\]

\[
= (n/k)^k \cdot 4^k = (4n/k)^k
\]

\[
C(n,k) = \# \text{ Length } n \text{ binary strings with } k \text{ 1s } \leq (4n/k)^k
\]
Bounds for Binomial Coefficients

Using `windowEncode()`: \(\binom{n}{k} \leq (4n/k)^k \)

Lower bound?

Idea: find a way to count a subset of the fixed density binary strings.

Some fixed density binary strings have one 1 in each of k chunks of size n/k.

How many such strings are there?

A. \(n^n \)
B. \(k! \)
C. \((n/k)^k \)
D. \(C(n,k)^k \)
E. None of the above.
Bounds for Binomial Coefficients

Using `windowEncode()`:

\[
\binom{n}{k} \leq (4n/k)^k
\]

Using evenly spread strings:

\[
(n/k)^k \leq \binom{n}{k}
\]

Counting helps us analyze our compression algorithm.

Compression algorithms help us count.
A **theoretically optimal encoding** for length n binary strings with k 1s would use the ceiling of $\log_2 \left(\binom{n}{k} \right)$ bits.

How?
- List all length n binary strings with k 1s in some order.
- **To encode:** Store the position of a string in the list, rather than the string itself.
- **To decode:** Given a position in list, need to determine string in that position.
A **theoretically optimal encoding** for length n binary strings with k 1s would use the ceiling of $\log_2 \binom{n}{k}$ bits.

How?
- List all length n binary strings with k 1s in some order.
- To encode: Store the position of a string in the list, rather than the string itself.
- To decode: Given a position in list, need to determine string in that position.

Use lexicographic (dictionary) ordering …
Lex Order

String *a* comes **before** string *b* if the **first time they differ**, *a* is smaller.

I.e.

\[a_1 a_2 \ldots a_n <_{\text{lex}} b_1 b_2 \ldots b_n \]

means there exists *j* such that

\[a_i = b_i \text{ for all } i < j \text{ AND } a_j < b_j \]

Which of these comes **last** in lex order?

A. 1001
B. 0011
C. 1101
D. 1010
E. 0000
E.g. Length $n=5$ binary strings with $k=3$ ones, listed in lex order:

<table>
<thead>
<tr>
<th>Original string, s</th>
<th>Encoded string (i.e. position in this list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00111</td>
<td>0 = 0000</td>
</tr>
<tr>
<td>01011</td>
<td>1 = 0001</td>
</tr>
<tr>
<td>01101</td>
<td>2 = 0010</td>
</tr>
<tr>
<td>01110</td>
<td>3 = 0011</td>
</tr>
<tr>
<td>10011</td>
<td>4 = 0100</td>
</tr>
<tr>
<td>10101</td>
<td>5 = 0101</td>
</tr>
<tr>
<td>10110</td>
<td>6 = 0110</td>
</tr>
<tr>
<td>11001</td>
<td>7 = 0111</td>
</tr>
<tr>
<td>11010</td>
<td>8 = 1000</td>
</tr>
<tr>
<td>11100</td>
<td>9 = 1001</td>
</tr>
</tbody>
</table>

\[
\binom{n-1}{k} = \binom{n}{k} - \binom{n}{k-1}
\]
Lex Order: Algorithm?

Need two algorithms, given specific n and k:

$$s \rightarrow E(s,n,k)$$

and

$$p \rightarrow D(p,n,k)$$

Idea: Use recursion.

Key insight: In lex order, strings that start with 0 come before strings that start with 1.
Lex Order: Algorithm?

For \(E(s,n,k) \):

- Any string that starts with 0 must have position before \(\binom{n - 1}{k} \).
- Any string that starts with 1 must have position at or after \(\binom{n - 1}{k} \).

Length \(n-1 \) binary strings with \(k \) 1s

Length \(n-1 \) binary strings with \(k-1 \) 1s
Lex Order: Algorithm?

For $E(s,n,k)$:

- Any string that starts with 0 must have position before $\binom{n-1}{k}$.
- Any string that starts with 1 must have position at or after $\binom{n-1}{k}$.

procedure lexEncode ($b_1 b_2 \ldots b_n$, n, k)

1. If $n = 1$,
2. return 0.
3. If $s_1 = 0$,
4. return lexEncode ($b_2 \ldots b_n$, n-1, k)
5. Else
6. return $C(n-1,k) + \text{lexEncode}(b_2 \ldots b_n, n-1, k-1)$

Recursive
procedure lexDecode (p, n, k)
1. If n = k,
2. return 1111...1 //length n string of all 1s
3. If p < C(n-1,k),
4. return "0" + lexDecode(p, n-1, k)
5. Else
6. return "1" + lexDecode(p-C(n-1,k), n-1, k-1)

For D(s,n,k):
• Any position before \(\binom{n-1}{k} \) must correspond to string that starts with 0.
• Any position at or after \(\binom{n-1}{k} \) must correspond to string that starts with 1.
Using \textit{lexEncode}, \textit{lexDecode}, we can represent any fixed density length n binary string with k 1s as one of $C(n,k)$ positions.

So, it takes $\log_2(C(n,k))$ bits to store fixed-density binary strings using lex order.

\textbf{Theoretical lower bound}: $\log_2(C(n,k))$.

Same! So this encoding algorithm is optimal.
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the *fastest possible worst case* for any sorting algorithm?
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the fastest possible worst case* for any sorting algorithm?*

Tree diagram for a sorting algorithm represents possible comparisons we might have to do, based on relative sizes of elements.

Sometimes called a decision tree
Another application of counting … lower bounds

Tree diagram for a sorting algorithm

Based on the result of comparisons, travel from root to leaf (ex.)

A, B, C distinct integers

Rosen p. 761
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the fastest possible worst case for any sorting algorithm?

Maximum (worst-case) number of comparisons for a sorting algorithm is the **height** of its tree diagram.
Another application of counting … lower bounds

How many leaves will there be in a decision tree that sorts n elements?

A. 2^n
B. $\log n$
C. $n!$
D. $C(n,2)$
E. None of the above.
Another application of counting ... lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the **fastest possible worst case** for any sorting algorithm?

max # of comparisons = **height** of tree diagram

For any algorithm, what would be **smallest possible height?**

What do we know about the tree?
* Internal nodes correspond to comparisons.
* Leaves correspond to possible input arrangements.
Another application of counting ... lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the fastest possible worst case for any sorting algorithm?

\[
\text{max # of comparisons} = \text{height of tree diagram}
\]

For any algorithm, what would be smallest possible height?

What do we know about the tree?
* Internal nodes correspond to comparisons.
* Leaves correspond to possible input arrangements.

\[n!\]
Another application of counting … lower bounds

How does height relate to number of leaves?

Theorem: There are at most 2^h leaves in a binary tree with height h.

Which of the following is true?

A. It's possible to have a binary tree with height 3 and 1 leaf.
B. It's possible to have a binary tree with height 1 and 3 leaves.
C. Every binary tree with height 3 has 1 leaf.
D. Every binary tree with height 1 has 3 leaves.
E. None of the above.
Another application of counting ... lower bounds

How does height relate to number of leaves?

Theorem: There are at most 2^h leaves in a binary tree with height h.

Which of the following is true?

A. It's possible to have a binary tree with height 3 and 1 leaf.
B. It's possible to have a binary tree with height 1 and 3 leaves.
C. Every binary tree with height 3 has 1 leaf.
D. Every binary tree with height 1 has 3 leaves.
E. None of the above.

Proof by induction on h
Another application of counting … lower bounds

What's the \textbf{fastest possible worst case} for any sorting algorithm?

max # of comparisons = \textbf{height} of tree diagram

Fastest possible worst case performance of sorting is \(\log_2(n!) \)
Another application of counting ... lower bounds

What's the fastest possible worst case for any sorting algorithm? $\log_2(n!)$

How big is that?

Lemma: For $n > 1$,

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} < n! < n^n$$

Proof:

$$n! = (n)(n-1)(n-2)\ldots\left(\frac{n}{2}\right)\ldots(3)(2)(1)$$

$$> \left(\frac{n}{2}\right)\left(\frac{n}{2}\right)\left(\frac{n}{2}\right)\ldots\left(\frac{n}{2}\right)$$

$$= \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$n! = (n)(n-1)(n-2)\ldots(3)(2)(1)$

$$< (n)(n)(n)\ldots(n)(n)(n)$$

$$= n^n$$

replace each term with a smaller term

replace each term with a bigger term
Another application of counting … lower bounds

What’s the fastest possible worst case for any sorting algorithm? \(\log_2(n!) \)

How big is that?

Lemma: For \(n > 1 \), \(\left(\frac{n}{2} \right)^{\frac{n}{2}} < n! < n^n \)

Theorem: \(\log_2(n!) \) is in \(\Theta(n \log n) \) \(\leftarrow \) bounded on both sides by some factor of \(n \log n \)

Proof: For \(n > 1 \), taking logs of both sides in the lemma gives

\[
\frac{n}{2} \log \left(\frac{n}{2} \right) < \log_2(n!) < n \log n
\]

\[\frac{1}{2} (n \log n - n \log 2) < \log_2(n!) < n \log n\]
Another application of counting … lower bounds

What's the **fastest possible worst case** for any sorting algorithm? \(\log_2(n!) \)

How big is that? \(\Theta(n \log n) \)

Therefore, the best sorting algorithms will need \(\Theta(n \log n) \) comparisons in the worst case.

It's impossible to have a comparison-based algorithm that does better than **Merge Sort** (in the worst case).

quicksort

tree sorting alg. from HW5 \(\Rightarrow \) also \(n \log n \) sorts
Announcements

HW
- HW6 due tomorrow
- HW7 due Sunday

No class Friday

Midterm
- Weds 11/16
- Practice Exam
- Review Sessions
 - See website!

Office Hours
- Mine are Friday 10-12 this week (no Saturday.)
- Lots on the course calendar!