CSE21 Fall 2016, Day 19

November 7, 2016

http://cseweb.ucsd.edu/classes/fa16/cse21-ab/
Announcements

HW
HW6 due tomorrow
HW7 due Sunday

No class Friday

Midterm
Weds 11/16
Practice Exam
Review Sessions
See website!

Office Hours
Mine are Friday 10-12 this week (no Saturday.)
Lots on the course calendar!
Encoding: Fixed Density Strings

Goal: encode a length n binary string that we know has k ones (and n-k zeros).

How would you represent such a string with \(n-1 \) bits? Can we do better?

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 011000000010$?

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?
Output: 01

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ? Output: 01

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 01000

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.

- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 011000000010$? output: 0100011

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode \(s = 011000000010\) ? Output: 0100011

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010___ ? Output: 01000110.

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example \(n=12, k=3, \) window size \(n/k = 4 \).

How do we encode \(s = 011000000010 \)? Output: \(01000110 \).

Compressed to 8 bits!

But can we recover the original string? Decoding …
Encoding: Fixed Density Strings

With \(n=12, k=3 \), window size \(n/k = 4 \). Output: 01000110

Can be parsed as the (intended) input: \(s = 011000000010 \) ?

But also:

01: one in position 1
0: no ones
00: one in position 0
11: one in position 3
0: no ones

\(s' = 010000100010 \)

Problem: two different inputs with same output. Can't uniquely decode.
A valid compression algorithm must:

- Have outputs of shorter (or same) length as input.
- Be uniquely decodable.
Can we modify this algorithm to get unique decodability?

Idea: use **marker bit** to indicate when to interpret output as a position.

- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output:
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output:
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example \(n=12, k=3, \) window size \(n/k = 4 \).

How do we encode \(s = 011000000010 \) ?

What output corresponds to these first few bits?

A. 0
B. 1
C. 01
D. 101
E. None of the above.
Idea: use marker bit to indicate when to interpret output as a position.

- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 01\underline{1}000000010$? Output: 101

Interpret next bits as position of 1; this position is 01
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example \(n=12, k=3, \) window size \(n/k = 4. \)

How do we encode \(s = 01100000010 \)? Output: 101

A. 101000110
B. 10110001110
C. 1011000110
D. 10110000111
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101100

Interpret next bits as position of 1; this position is 00
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ? Output: 101100
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string,
 record a 1 to interpret next bits as position,
 then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 1011000

No 1s in this window.
Idea: use marker bit to indicate when to interpret output as a position.

- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000111

Interpret next bits as position of 1; this position is 11
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000001__ ? Output: 1011000111
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010_? Output: 10110001110

No 1s in this window.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 10110001110

Compare to previous output: 01000110

Output uses more bits than last time. Any redundancies?
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 10110001110

Compare to previous output: 01000110

* Since k is known, after we see the last 1, we can stop since the rest are 0s. *
procedure WindowEncode (input: \(b_1b_2...b_n\), with exactly \(k\) ones and \(n-k\) zeros)

1. \(w := \text{floor} \ (n/k)\)
2. \(\text{count} := 0\)
3. \(\text{location} := 1\)
4. While \(\text{count} < k\):
 5. If there is a 1 in the window starting at current location
 6. Output 1 as a marker, then output position of first 1 in window.
 7. Increment count.
 8. Update location to immediately after first 1 in this window.
 9. Else
 10. Output 0.
 11. Update location to next index after current window.

Uniquely decodable?
Decoding: Fixed Density Strings

procedure WindowDecode (input: $x_1x_2\ldots x_m$, target is exactly k ones and $n-k$ zeros)

1. $w := \text{floor} \left(\frac{n}{k} \right)$
2. $b := \text{floor} \left(\log_2(w) \right)$
3. $s := \text{empty string}$
4. $i := 0$
5. While $i < m$
6. If $x_i = 0$
7. $s += 0\ldots0$ (j times)
8. $i += 1$
9. Else
10. $p := \text{decimal value of the bits } x_{i+1}x_{i+2}\ldots x_{i+b}$
11. $s += 0\ldots0$ (p times)
12. $s += 1$
13. $i := i+b+1$
14. If $\text{length}(s) < n$
15. $s += 0\ldots0$ (n-length(s) times)
16. Output s.
Correctness?

\[E(s) = \text{result of encoding string } s \text{ of length } n \text{ with } k \text{ } 1\text{s, using } \text{WindowEncode.} \]

\[D(t) = \text{result of decoding string } t \text{ to create a string of length } n \text{ with } k \text{ } 1\text{s, using } \text{WindowDecode.} \]

Well-defined functions?

Inverses?

Can show that for each \(s \), \(D(E(s)) = s \).

Proof uses Strong Induction!
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

How long is $E(s)$?

A. $n-1$
B. $\log_2(n/k)$
C. Depends on where 1s are located in s.
D. None of the above.
Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

For which strings is $E(s)$ shortest?

A. More 1s toward the beginning.
B. More 1s toward the end.
C. 1s spread about evenly throughout.
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

Best case: 1s toward the beginning of the string. \(E(s) \) has
- One bit for each 1 in \(s \) to indicate that next bits denote positions in window.
- \(\log_2(n/k) \) bits for each 1 in \(s \) to specify position of that 1 in a window.
- \(k \) such ones.
- No bits representing empty windows because all 0s are either "caught" in windows with 1s or after the last 1.

Total \(|E(s)| = k \log_2(n/k) + k \)
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

Worst case: 1s toward the end of the string. \(E(s) \) has
- Some bits for empty windows since there are no 1s in first several windows.
- One bit for each 1 in \(s \) to indicate that next bits denote positions in window.
- \(\log_{2}(n/k) \) bits for each 1 in \(s \) to specify position of that 1 in a window.
- \(k \) such ones.

What's an upper bound on the number of these bits?

A. \(n \)
B. \(n-k \)
C. 1
D. \(k \)
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case: 1s toward the end of the string. $E(s)$ has
- At most k bits for empty windows since at most k nonoverlapping windows of length n/k will fit in a string of length n.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

Total $|E(s)| \leq k \log_2(n/k) + 2k$
Encoding/Decoding: Fixed Density Strings

Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

\[
k \log_2\left(\frac{n}{k}\right) + k \leq |E(s)| \leq k \log_2\left(\frac{n}{k}\right) + 2k
\]

Using this inequality, there are at most ____ length \(n \) strings with \(k \) 1s.

A. \(2^n \) D. \((n/k)^k \)
B. \(n \) E. None of the above.
C. \((n/k)^2 \)
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{k \log_2(n/k) + 2k}$ many such strings.
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s. Given \(|E(s)| \leq k \log_2(n/k) + 2k \), we need at most \(k \log_2(n/k) + 2k \) bits to represent all length \(n \) binary strings with \(k \) 1s. Hence, there are at most \(2^{k \log_2(n/k) + 2k} \) many such strings.

\[
2^{(k \log(n/k) + 2k)} = 2^{(k \log(n/k))} \cdot 2^{(2k)} = \left(2^{(\log(n/k))}\right)^k \cdot 2^{(2k)} = (n/k)^k \cdot 4^k = (4n/k)^k
\]
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{k \log_2(n/k) + 2k}$ many such strings.

\[
2^{(k \log(n/k) + 2k)} = 2^{(k \log(n/k))} \cdot 2^{(2k)} \\
= \left(2^{(\log(n/k))}\right)^k \cdot 2^{(2k)} \\
= (n/k)^k \cdot 4^k = (4n/k)^k
\]

\[C(n,k) = \# \text{ Length } n \text{ binary strings with } k \text{ 1s} \leq (4n/k)^k\]
Using \text{windowEncode}(): \binom{n}{k} \leq \left(\frac{4n}{k}\right)^k

Lower bound?

\textbf{Idea}: find a way to count a \textit{subset} of the fixed density binary strings.

Some fixed density binary strings have one 1 in each of \(k\) chunks of size \(n/k\).

How many such strings are there?

\begin{itemize}
 \item A. \(n^n\)
 \item B. \(k!\)
 \item C. \((n/k)^k\)
 \item D. \(\binom{n}{k}^k\)
 \item E. None of the above
\end{itemize}
Bounds for Binomial Coefficients

Using `windowEncode()`:

\[
\binom{n}{k} \leq (4n/k)^k
\]

Using evenly spread strings:

\[
(n/k)^k \leq \binom{n}{k}
\]

Counting helps us analyze our compression algorithm.

Compression algorithms help us count.
A **theoretically optimal encoding** for length n binary strings with k 1s would use the ceiling of $\log_2 \binom{n}{k}$ bits.

How?
- List all length n binary strings with k 1s in some order.
- **To encode:** Store the **position** of a string in the list, rather than the string itself.
- **To decode:** Given a position in list, need to determine string in that position.
A **theoretically optimal encoding** for length n binary strings with k 1s would use

the ceiling of $\log_2 \binom{n}{k}$ bits.

How?

- List all length n binary strings with k 1s in some order.
- **To encode:** Store the position of a string in the list, rather than the string itself.
- **To decode:** Given a position in list, need to determine string in that position.

Use lexicographic (dictionary) ordering ...
String \(a \) comes before string \(b \) if the \textbf{first time they differ}, \(a \) is smaller.

I.e.

\[
a_1 a_2 \ldots a_n <_{\text{lex}} b_1 b_2 \ldots b_n
\]

means there exists \(j \) such that

\[
a_i = b_i \text{ for all } i < j \text{ AND } a_j < b_j
\]

Which of these comes \textbf{last} in lex order?

A. 1001
C. 1101
E. 0000
B. 0011
D. 1010
E.g. Length n=5 binary strings with k=3 ones, listed in lex order:

<table>
<thead>
<tr>
<th>Original string, s</th>
<th>Encoded string (i.e. position in this list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00111</td>
<td>0 = 0000</td>
</tr>
<tr>
<td>01011</td>
<td>1 = 0001</td>
</tr>
<tr>
<td>01101</td>
<td>2 = 0010</td>
</tr>
<tr>
<td>01110</td>
<td>3 = 0011</td>
</tr>
<tr>
<td>10011</td>
<td>4 = 0100</td>
</tr>
<tr>
<td>10101</td>
<td>5 = 0101</td>
</tr>
<tr>
<td>10110</td>
<td>6 = 0110</td>
</tr>
<tr>
<td>11001</td>
<td>7 = 0111</td>
</tr>
<tr>
<td>11010</td>
<td>8 = 1000</td>
</tr>
<tr>
<td>11100</td>
<td>9 = 1001</td>
</tr>
</tbody>
</table>
Lex Order: Algorithm?

Need two algorithms, given specific n and k:

$$s \rightarrow E(s,n,k)$$

and

$$p \rightarrow D(p,n,k)$$

Idea: Use recursion.

Key insight: In lex order, strings that start with 0 come before strings that start with 1.
Lex Order: Algorithm?

For \(E(s,n,k) \):

0….
0….
…
1…..
1….
1….

- Any string that starts with 0 must have position before \(\binom{n-1}{k} \)
- Any string that starts with 1 must have position at or after \(\binom{n-1}{k} \)

Length n-1 binary strings with k 1s
Length n-1 binary strings with k-1 1s
Lex Order: Algorithm?

For \(E(s,n,k) \):

- Any string that starts with 0 must have position before \(\binom{n-1}{k} \)
- Any string that starts with 1 must have position at or after \(\binom{n-1}{k} \)

procedure lexEncode \((b_1b_2...b_n, n, k)\)
1. If \(n = 1 \),
2. \hspace{1em} return 0.
3. If \(s_1 = 0 \),
4. \hspace{1em} return lexEncode \((b_2...b_n, n-1, k)\)
5. Else
6. \hspace{1em} return \(C(n-1,k) + \text{lexEncode}(b_2...b_n, n-1, k-1) \)
Lex Order: Algorithm?

For $D(s,n,k)$:

- Any position **before** $\binom{n-1}{k}$ must correspond to string that starts with 0.
- Any position **at or after** $\binom{n-1}{k}$ must correspond to string that starts with 1.

```
procedure lexDecode (p, n, k)
    1. If $n = k$,
    2. return 1111..1   //length n string of all 1s
    3. If $p < C(n-1,k)$,
    4. return "0" + lexDecode(p, n-1, k)
    5. Else
    6. return "1" + lexDecode(p-C(n-1,k), n-1, k-1)
```
Victory!

Using lexEncode, lexDecode,
we can represent any fixed density length n binary string with k 1s as one of $C(n,k)$ positions.

So, it takes $\log_2(\ C(n,k)\)$ bits to store fixed-density binary strings using lex order.

Theoretical lower bound: $\log_2(\ C(n,k)\)$.

Same! So this encoding algorithm is optimal.
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the fastest possible worst case for any sorting algorithm?
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the fastest possible worst case for any sorting algorithm?

Tree diagram for a sorting algorithm represents possible comparisons we might have to do, based on relative sizes of elements.

Sometimes called a decision tree
Another application of counting … lower bounds

Tree diagram for a sorting algorithm

Rosen p. 761
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

*What's the *fastest possible worst case* for any sorting algorithm?*

Maximum (worst-case) number of comparisons for a sorting algorithm is the **height** of its tree diagram.
How many leaves will there be in a decision tree that sorts n elements?

A. 2^n
B. $\log n$
C. $n!$
D. $C(n,2)$
E. None of the above.
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the **fastest possible worst case** for any sorting algorithm?

max # of comparisons = **height** of tree diagram

For any algorithm, what would be **smallest possible height**?

What do we know about the tree?

* Internal nodes correspond to comparisons.
* Leaves correspond to possible input arrangements.
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the **fastest possible worst case** for any sorting algorithm?

max # of comparisons = **height** of tree diagram

For any algorithm, what would be **smallest possible height**?

What do we know about the tree?
* Internal nodes correspond to comparisons.
* Leaves correspond to possible input arrangements.

$n!$
Another application of counting … lower bounds

How does height relate to number of leaves?

Theorem: There are at most 2^h leaves in a binary tree with height h.

Which of the following is true?

A. It's possible to have a binary tree with height 3 and 1 leaf.
B. It's possible to have a binary tree with height 1 and 3 leaves.
C. Every binary tree with height 3 has 1 leaf.
D. Every binary tree with height 1 has 3 leaves.
E. None of the above.
Another application of counting ... lower bounds

How does height relate to number of leaves?

Theorem: There are at most 2^h leaves in a binary tree with height h.

Which of the following is true?

A. It's possible to have a binary tree with height 3 and 1 leaf.
B. It's possible to have a binary tree with height 1 and 3 leaves.
C. Every binary tree with height 3 has 1 leaf.
D. Every binary tree with height 1 has 3 leaves.
E. None of the above.

Proof by induction on h
Another application of counting … lower bounds

What’s the fastest possible worst case for any sorting algorithm?

max # of comparisons = **height** of tree diagram

\[
\begin{align*}
\# \text{ leaves} & \leq 2^h \\
n! & \leq 2^h \\
\log_2 n! & \leq h \\
h & \geq \log_2 n!
\end{align*}
\]

Fastest possible worst case performance of sorting is \(\log_2(n!) \)
Another application of counting … lower bounds

What's the **fastest possible worst case** for any sorting algorithm? \(\log_2(n!) \)

How big is that?

Lemma: For \(n > 1 \),

\[
\left(\frac{n}{2} \right)^{\frac{n}{2}} < n! < n^n
\]

Proof:

\[
n! = (n)(n-1)(n-2) \ldots \left(\frac{n}{2} \right) \ldots (3)(2)(1) > \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \ldots \left(\frac{n}{2} \right) = \left(\frac{n}{2} \right)^{\frac{n}{2}}
\]

\[
n! = (n)(n-1)(n-2) \ldots (3)(2)(1) < (n)(n)(n) \ldots (n)(n)(n) = n^n
\]
Another application of counting … lower bounds

What's the **fastest possible worst case** for any sorting algorithm? \(\log_2(n!) \)

How big is that?

Lemma: For \(n > 1 \), \(\left(\frac{n}{2} \right)^{\frac{n}{2}} < n! < n^n \)

Theorem: \(\log_2(n!) \) is in \(\Theta(n \log n) \)

Proof: For \(n > 1 \), taking logs of both sides in the lemma gives

\[
\frac{n}{2} \log \left(\frac{n}{2} \right) < \log_2(n!) < n \log n
\]

\[
\frac{1}{2} \left(n \log n - n \log 2 \right) < \log_2(n!) < n \log n
\]
What's the fastest possible worst case for any sorting algorithm? \(\log_2(n!) \)

How big is that? \(\Theta(n \log n) \)

Therefore, the best sorting algorithms will need \(\Theta(n \log n) \) comparisons in the worst case.

It's impossible to have a comparison-based algorithm that does better than Merge Sort (in the worst case).
Announcements

HW
HW6 due tomorrow
HW7 due Sunday

No class Friday

Midterm
Weds 11/16
Practice Exam Review Sessions See website!

Office Hours
Mine are Friday 10-12 this week (no Saturday.)
Lots on the course calendar!