Two more days!

HW6 extended

Now due Tuesday at 10pm

HW7 due Sunday 11/13.
Midterm 2 on Weds 11/16.
Recall: Fixed-density Binary Strings

How many length n binary strings contain k ones?

Density is number of ones

Objects: all strings made up of 0_1, 0_2, 1_1, 1_2, 1_3, 1_4

Categories: strings that agree except subscripts

Size of each category: $k!(n-k)!$

categories = (# objects) / (size of each category)

= $n! / (k! (n-k) !) = C(n,k) = \binom{n}{k}$
Binomial Coefficient Identities

What's an identity? An equation that is always true.

To prove

\[(x + 1)^2 = x^2 + 2x + 1\]

LHS = RHS

• Use algebraic manipulations of formulas.

OR

• Interpret each side as counting some collection of strings, and then prove a statements about those sets of strings.
Theorem: \[\binom{n}{k} = \binom{n}{n-k} \]
Symmetry Identity

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof 1: Use formula

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}
\]
Symmetry Identity

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof 1: Use formula

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}
\]

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length \(n \) with \(k \) ones

RHS counts number of binary strings of length \(n \) with \(n-k \) ones

Rosen p. 411
Symmetry Identity

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof 1: Use formula

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}
\]

Proof 2: Combinatorial interpretation?

- **LHS** counts number of binary strings of length n with k ones and n-k zeros
- **RHS** counts number of binary strings of length n with n-k ones and k zeros

Rosen p. 411
Theorem: \[\binom{n}{k} = \binom{n}{n-k} \]

Proof 1: Use formula
\[\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k} \]

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n with k ones and n-k zeros

RHS counts number of binary strings of length n with n-k ones and k zeros

Can match up these two sets by pairing each string with another where 0s, 1s are flipped. This *bijection* means the two sets have the same size. So **LHS = RHS**.
Pascal's Identity

Theorem: \[\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \]

Proof 1: Use formula

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings ???
RHS counts number of binary strings ???
Pascal's Identity

Theorem: \[\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \]

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n+1 that have k ones.

RHS counts number of binary strings ???

Length n+1 binary strings with k ones
Theorem: \[\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \]

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length $n+1$ that have k ones.

RHS counts number of binary strings ???

Rosen p. 418

Start with 1
Start with 0
How many length $n+1$ strings start with 1 and have k ones in total?

A. $C(n+1, k+1)$
B. $C(n, k)$
C. $C(n, k+1)$
D. $C(n, k-1)$
E. None of the above.

Pascal's Identity

Rosen p. 418
How many length \(n+1 \) strings start with 0 and have \(k \) ones in total?

A. \(\binom{n+1}{k+1} \)

B. \(\binom{n}{k} \)

C. \(\binom{n}{k+1} \)

D. \(\binom{n}{k-1} \)

E. None of the above.

Pascal's Identity

Rosen p. 418
Pascal's Identity

Theorem: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \)

Proof 2: Combinatorial interpretation?

LHS counts number of binary strings of length n+1 that have k ones.
RHS counts number of binary strings of length n+1 that have k ones, split in two.

Start with 1
Start with 0

Rosen p. 418
Sum Identity

Theorem: \[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]

What set does the LHS count?

A. Binary strings of length n that have k ones.
B. Binary strings of length n that start with 1.
C. Binary strings of length n that have any number of ones.
D. None of the above.
Theorem:
\[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]

Proof: Combinatorial interpretation?

LHS counts number of binary strings of length n that have any number of 1s.

By sum rule, we can break up the set of binary strings of length n into disjoint sets based on how many 1s they have, then add their sizes.

RHS counts number of binary strings of length n.

This is the same set so **LHS = RHS**.
What's the **smallest** number of **bits** that we need to specify a binary string of length **n** if we know it has **k ones** and **n-k zeros**?

\[\# \text{ bits} = \log_2 \left(\binom{n}{k} \right) \]

A. \(n \)
B. \(k \)
C. \(\log_2(\binom{n}{k}) \)
D. \(n-k \)
E. None of the above
Data Compression

Store / transmit information in as little space as possible
Video: stored as sequence of still frames.

Idea: instead of storing each frame fully, record change from previous frame.
Image: described as grid of pixels, each with RED, GREEN, BLUE values.

Idea: instead of storing RGB value of each pixel, store run-length of run of same color.

When is this a good coding mechanism? Will there be any loss in this compression?
Lossy Compression: Singular Value Decomposition

Image: described as grid of pixels, each with **RED, GREEN, BLUE** values.

Idea: use Linear Algebra to compress data to a fraction of its size, with minimal loss.
Complicated compression scheme

… save storage space
… may take a long time to encode / decode
Encoding: Binary Palindromes

Palindrome: string that reads the same forward and backward.

\[\text{e.g., } n = 3, \ 0 \ 1 \ 0, \ 0 \ 1 \ 0, \ 1 \ 1 \ 1, \ 1 \ 1 \ 1 \]

How many length \(n \) binary palindromes are there?

A. \(2^n \)
B. \(n \)
C. \(n/2 \)
D. \(\log_2 n \)
E. None of the above
Encoding: Binary Palindromes

Palindrome: string that reads the same forward and backward.

How many bits are (optimally) required to encode a length n binary palindrome?

A. \(n \)
B. \(n-1 \)
C. \(\lceil n/2 \rceil \)
D. \(\log_2 n/2 \)

Is there an algorithm that achieves this?
Encoding: Fixed Density Strings

Goal: encode a length n binary string that we know has k ones (and $n-k$ zeros).

How would you represent such a string with $n-1$ bits?

Ex.: $n = 7$, $k = 4$

Store first 6 bits can figure out last bit from knowing k (total # of ones)
Encoding: Fixed Density Strings

Goal: encode a length \(n \) binary string that we know has \(k \) ones (and \(n-k \) zeros).

How would you represent such a string with \(n-1 \) bits?

Can we do better? What if we know \(k \) is much less than \(n \)?

- **Example:** \(n = 15, \ k = 3 = \# \text{ of ones} \)
 - For each 1, give its position as a 4-bit number
 - \(\log_2 15 \) = 4 bits needed
 - \(3 \times 4 = 12 \) bits total

Note:
- Only store positions of ones.
Goal: encode a length n binary string that we know has k ones (and n-k zeros).

How would you represent such a string with \(n-1\) bits?

Can we do better? What if we know k is only slightly less than n?

opposite - store positions of 0s
Goal: encode a length n binary string that we know has k ones (and n-k zeros).

How would you represent such a string with n-1 bits?

Can we do better? What if k is about half of n?

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 01100000010$?

There's a 1! What's its position?

Output:

```
0 1 1 0
00 01 10 11
```
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 01\underline{1}00000010$? Output: 01

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string,
 record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01\underline{1}00000010 ? Output: 0100

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ? Output: 01000

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 011000000010$?
Output: 0100011

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 0100011

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010___ ? Output: 01000110.

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string,
 record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example \(n=12, k=3, \) window size \(n/k = 4. \)

How do we encode \(s = 011000000010 \) ? \(\) Output: \(01000110. \)

Compressed to 8 bits!

But can we recover the original string? Decoding …
Encoding: Fixed Density Strings

With \(n=12, \ k=3, \) window size \(n/k = 4 \). Output: 01000110

Can be parsed as the (intended) input: \(s = 011000000010 \)?

But also:

- 01: one in position 1
- 0: no ones
- 00: one in position 0
- 11: one in position 3
- 0: no ones

\[s' = 010000100010 \]

Problem: two different inputs with same output. Can't uniquely decode.
A valid compression algorithm must:

- Have outputs of shorter (or same) length as input.
- Be uniquely decodable.
Can we modify this algorithm to get unique decodability?

Idea: use *marker bit* to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output:
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output:
Encoding: Fixed Density Strings

Idea: use **marker bit** to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string,
 record a 1 to interpret next bits as position,
 then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = \underline{011000000010}$?

Output:

What output corresponds to these first few bits?

<table>
<thead>
<tr>
<th>Option</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 0</td>
<td>C. 01</td>
</tr>
<tr>
<td>B. 1</td>
<td>D. 101</td>
</tr>
</tbody>
</table>

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ? Output: 101
Interpret next bits as position of 1; this position is 01
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ?

Output: 101

A. 101000110
B. 10110001110
C. 1011000110
D. 10110000111
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode \(s = 01100000010 \) ? Output: 101100

Interpret next bits as position of 1; this position is 00
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101100
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ?

Output: 1011000

No 1s in this window.
Encoding: Fixed Density Strings

Idea: use *marker bit* to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12, k=3$, window size $n/k = 4$.

How do we encode $s = 011000000010$?
Output: 1011000
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string,
 record a 1 to interpret next bits as position,
 then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example \(n=12, \ k=3, \) window size \(n/k = 4. \)

How do we encode \(s = 011000000010 \) ? Output: \(1011000111 \)

Interpret next bits as position of 1; this position is 11.
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000101__ ? Output: 1011000111
Idea: use **marker bit** to indicate when to interpret output as a position.

- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 01100000010$? Output: 10110001110

No 1s in this window.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example: $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 01100000001$?

Output: 10110001110

Compare to previous output: 01000110

Output uses more bits than last time. Any redundancies?
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 10110001110

Compare to previous output: 01000110

* Since k is known, after we see the last 1, we can stop since the rest are 0s. *
procedure WindowEncode (input: $b_1b_2\ldots b_n$, with exactly k ones and n-k zeros)

1. $w := \text{floor} \ (n/k)$
2. count := 0
3. location := 1
4. While count < k:
5. If there is a 1 in the window starting at current location
6. Output 1 as a marker, then output position of first 1 in window.
7. Increment count.
8. Update location to immediately after first 1 in this window.
9. Else
10. Output 0.
11. Update location to next index after current window.

Uniquely decodable?
procedure WindowDecode (input: \(x_1 \ldots x_m\), target is exactly \(k\) ones and \(n-k\) zeros)

1. \(w := \text{floor}(\ n/k\))
2. \(b := \text{floor}(\ \log_2(w)\))
3. \(s := \text{empty string}\)
4. \(i := 0\)
5. While \(i < m\)
6. If \(x_i = 0\)
7. \(s += 0 \ldots 0\ \text{(}j\ \text{times)}\)
8. \(i += 1\)
9. Else
10. \(p := \text{decimal value of the bits} \ x_{i+1} \ldots x_{i+b}\)
11. \(s += 0 \ldots 0\ \text{(}p\ \text{times)}\)
12. \(s += 1\)
13. \(i := i+b+1\)
14. If \(\text{length}(s) < n\)
15. \(s += 0 \ldots 0\ \text{(}n-\text{length}(s)\ \text{times)}\)
16. Output \(s\).
Correctness?

E(s) = result of encoding string s of length n with k 1s, using \texttt{WindowEncode}.

D(t) = result of decoding string t to create a string of length n with k 1s, using \texttt{WindowDecode}.

Well-defined functions?
Inverses?

Can show that for each s, D(E(s)) = s.
Proof uses Strong Induction!
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

How long is E(s)?

A. n-1
B. $\log_2(n/k)$
C. Depends on where 1s are located in s.
D. None of the above.
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

For which strings is \(E(s) \) shortest?

A. More 1s toward the beginning.
B. More 1s toward the end.
C. 1s spread about evenly throughout.
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Best case: 1s toward the beginning of the string. $E(s)$ has
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.
- No bits representing empty windows because all 0s are either "caught" in windows with 1s or after the last 1.

Total $|E(s)| = k \log_2(n/k) + k$
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case: 1s toward the end of the string. $E(s)$ has
- Some bits for empty windows since there are no 1s in first several windows.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

What's an upper bound on the number of these bits?

A. n
B. $n-k$
C. 1
D. k
Output size?

Assume \(\frac{n}{k} \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

Worst case: 1s toward the end of the string. \(E(s) \) has
- At most \(k \) bits for empty windows since at most \(k \) nonoverlapping windows of length \(\frac{n}{k} \) will fit in a string of length \(n \).
- One bit for each 1 in \(s \) to indicate that next bits denote positions in window.
- \(\log_2(\frac{n}{k}) \) bits for each 1 in \(s \) to specify position of that 1 in a window.
- \(k \) such ones.

Total \(|E(s)| \leq k \log_2(\frac{n}{k}) + 2k \)
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

\[k \log_2(n/k) + k \leq |E(s)| \leq k \log_2(n/k) + 2k \]

Using this inequality, there are at most ____ length n strings with k 1s.

A. 2^n
B. n
C. $(n/k)^2$
D. $(n/k)^k$
E. None of the above.
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{k \log_2(n/k) + 2k}$ many such strings.
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s. Given \(|E(s)| \leq k \log_2(n/k) + 2k \), we need at most \(k \log_2(n/k) + 2k \) bits to represent all length \(n \) binary strings with \(k \) 1s. Hence, there are at most \(2^{k \log_2(n/k) + 2k} \) many such strings.

\[
2^{k \log(n/k) + 2k} = 2^{k \log(n/k)} \cdot 2^{2k} \\
= \left(2^{\log(n/k)}\right)^k \cdot 2^{2k} \\
= \left(n/k\right)^k \cdot 4^k = \left(4n/k\right)^k
\]
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{(k \log_2(n/k)+2k)}$ many such strings.

\[
2^{(k \log_2(n/k)+2k)} = 2^{(k \log_2(n/k))} \cdot 2^{(2k)}
\]

\[
= \left(2^{(\log_2(n/k))}\right)^k \cdot 2^{(2k)}
\]

\[
= \left(n/k\right)^k \cdot 4^k = \left(4n/k\right)^k
\]

\[
C(n,k) = \# \text{ Length } n \text{ binary strings with } k \text{ 1s} \leq (4n/k)^k
\]
Using `windowEncode()`:

\[\binom{n}{k} \leq (4n/k)^k \]

Lower bound?

Idea: find a way to count a subset of the fixed density binary strings.

Some fixed density binary strings have one 1 in each of k chunks of size n/k.

How many such strings are there?

A. \(n^n \)
B. \(k! \)
C. \((n/k)^k \)
D. \(C(n,k)^k \)
E. None of the above.
Bounds for Binomial Coefficients

Using `windowEncode()`:

\[
\binom{n}{k} \leq (4n/k)^k
\]

Using evenly spread strings:

\[
(n/k)^k \leq \binom{n}{k}
\]

Counting helps us analyze our compression algorithm.

Compression algorithms help us count.
Announcements

HW6 extended
Now due Tues 10pm
HW7 due Sunday 11/13.
Midterm 2 on Weds 11/16.

Office Hours
Mine are today 10-11
and tomorrow 3:30-5:30.
Lots on the course calendar!