CSE 200 - Computability and Complexity
The abundance of NP-complete problems

Russell Impagliazzo and Jiawei Gao

Oct., 2016
Idea: relationships between two variables = edges in a graph
Say we have a CSP with variables $v_1..v_n \in \{1, 2, 3\}$ and constraints $R_{i,j}(v_i, v_j)$ for some pairs i, j.

F: We create a graph and an integer k from the CSP as follows:
For every i, create a triangle $u_{i,1}, u_{i,2}, u_{i,3}$, (where we will put u_{i,v_i} in the independent set). If $\neg R_{i,j}(d, d')$, i.e., we are not allowed to give $v_i = d$ and $v_j = d'$, then we put an additional edge between $u_{i,d}$ and $u_{i',d'}$. We set $k = n$.
Example

Say we have four variables A, B, C, D, and constraints:

1. $A \neq C$
2. If $A = 1$ then $B = 1$
3. If $B = 1$ then $C \neq 2$
4. $C \neq D$

What does the corresponding instance of BIS look like?
G: Assume S is an independent set in the constructed graph of size $k = n$. Then each triangle $v_{i,1}, v_{i,2}, v_{i,3}$ must have exactly one element in the independent set. We assign v_i to be the one value d so that $u_{i,d} \in S$. This meets every constraint, because if it failed for a constraint between v_i and $v_{i'}$, there’d be an edge between the two vertices u_{i,v_i} and $u_{i',v_{i'}}$, both of which are in the supposed independent set S.
Equivalence

\(H: \) Assume there is an assignment \(v_1...v_n \) that meets all the constraints. Let \(S = \{u_{i,v_i}\}. \) \(|S| = n = k. \) \(S \) has exactly one vertex per triangle, and if there were an edge between the two vertices \(u_{i,v_i} \) and \(u_{i',v_i'}. \), both of which are in the supposed independent set \(S, \) then \(v_i, v_i' \) would violate the constraint \(R_{i,i'}. \) So \(S \) is an independent set in the constructed graph.
A 3-coloring of a graph is a labeling of its vertices with 3 colors, R, G, B, so that adjacent vertices have different labels. The 3-coloring problem is, given a graph, determine whether such a coloring exists.
NP-completeness of 3-coloring

We already saw 3-coloring $\in NP$. We will reduce $CSP_{2,3}$ to 3-coloring. One issue is that there is complete symmetry between the three colors, but not in the values 1,2,3 assigned the variables in a CSP. So we’ll use the following “gadget”. Three nodes 1, 2, 3 connected in a triangle, with whatever color we color node i being identified with a variable having value i. Saying a vertex can only have a subset of values, say 1, 2, is equivalent to putting an edge to node 3. We’ll use this as a short-hand in our construction.
The mapping

\(F \): We are given a CSP in variables \(v_1 \ldots v_n \). Create the triangle mentioned above. Add one vertex \(u_1 \ldots u_n \) for each variable. For each pair of values \(d, d' \) with \(d \neq d' \), where \(v_j = d, v_k = d' \) is inconsistent with a constraint, let \(d'' \) be the third value. We add two new vertices, \(a_{j,k,d,d'} b_{j,k,d,d'} \) with \(u_j \) connected to \(a_{j,k,d,d'} \) connected to \(b_{j,k,d,d'} \) connected to \(u_k \). We allow colors \(d \) and \(d'' \) for \(a \), and \(d' \) and \(d'' \) for \(b \). If it is inconsistent to give \(v_j \) and \(v_k \) the same value \(d \), we add three new vertices, \(a_{j,k,d}, b_{j,k,d}, c_{j,k,d} \) connecting \(u_j \) to \(u_k \) in a line, and allow \(a \) colors \(d, d', d'' \), \(b \) colors \(d', d'' \) and \(c \) colors \(d'', d \).
Example

What does the sub-graph expressing $A \neq C$ look like? What about $A = 1 \implies B = 1$?
Equivalence

G: Say that the graph we constructed is 3-colorable. To give values to the variables, we: identify the color given vertex $d \in \{1, 2, 3\}$ with value d, and give v_i the value corresponding to the color of u_i.

This obeys the constraints, because if v_i and v_j had values $d \neq d'$ which violated a constraint, we'd color $u_j d$, $u_k d'$, and then $a_{j,k,d,d'}$ and $b_{j,k,d,d'}$ would be neighboring vertices both colored d'', contradicting the properties of a valid 3-coloring.

Similarly, if both are given value d, which violates the constraint, $a_{j,k,d}$ would be colored d', $c_{j,k,d}$ would be colored d'', and $b_{j,k,d}$ has no possible color.
Equivalence

\(H: \) Conversely, say we have values \(d_i \) for each variable that meets all constraints. Then we color the triangle with say 1 colored \(R \), 2 colored \(B \) and 3 colored \(G \), and color each \(u_i \) with the color corresponding to \(d_i \).

For the gadget vertices, if \(d \neq d' \) violates the constraint for \(v_j, v_k \), we know either \(d_j \neq d \) or \(d_k \neq d' \). If the former, we color \(a_{j,k,d,d'} \) \(d \), and \(b_{j,k,d,d'} d'' \), and color a \(d'' \) and b \(d' \) if the latter. For \(v_j = v_k = d \) violating the constraints, we know either \(d_j \neq d \) or \(d_k \neq d \), so in the first case, we color a \(d \), and then color c to be different from \(d_k \), and b to be different from the color of c, and symmetrically if \(d_k \neq d \).
The subset sum problem has as input a list of n integers $a_1..a_n$ and a target integer T. The question is: Does there exist a subset S of $1, ... n$ so that $\sum_{i \in S} a_i = T$?

This problem arises in scheduling, in load-balancing, and in lattice based cryptography.
To specify a subset takes \(n \) bits, and verifying it just involves adding the given integers. So \(\text{SubsetSum} \in NP \).

We’ll reduce from Big Independent Set. Say we are given a graph \(G \), and a target size \(k \). We’ll construct integers as follows. First, let’s look at our integers base 4, and think of their having digits that correspond to edge positions, so for each edge \(e_1 \ldots e_m \), they will have digits \(d_1, \ldots d_m \), and also a high order value \(H \), beyond the \(m \)'th digit. The high order value will count the size of the set.
The integers

For each vertex v, we will create an integer a_v whose first m base 4 digits are 1 in position j iff $v \in e_j$ and 0 otherwise. The high order value will always be 1.

We also have a “slack” integer b_e for each edge e, that is 1 in the position corresponding to e, 0 everywhere else, and 0 as its high order part.

The target T will have all 1’s as its digits, and k as its high order part.
Say we have a solution $\sum_{v \in S_V} a_v + \sum_{e \in S_E} b_e = T$. We let $I = S_V$. Note that for each digit, corresponding to $e = \{u, v\}$, there are 3 integers in our input with a 1 in that digit, a_u, a_v and b_e. So we will never have any carries when adding a subset base 4. To get a 1 in that digit, as in the target, at most one of a_u and a_v must be in S_V, so $I = S_V$ is an independent set. Since there are no carries, the high order part of the sum is the sum of the high order bits, and must be k. Only a_v has a non-zero high order bit, so we must have $k = |S_V| = |I|$. as desired
Say we have an independent set I in G of size k. Then we pick S as follows: Include a_v if $v \in I$, include b_e if neither endpoint of e is in I. Then for every edge $e = \{u, v\}$, we’ve included exactly one of $a_u, a_v, \text{and } b_e$. So the e’th digit of the sum will be 1 for every e. The high order part of the sum will be $|S_V| = |I| = k$. Thus, the sum will match the target.
Meaning of NP-completeness

If an optimization problem is shown to be NP-complete, and P is very different from NP, that means: We will not have a fast algorithm that can find the exact optimal solution on every instance of the problem. This still leaves open many possibilities.