
1

Deconstructing OCaml

What makes up a language

Key components of a lang

• Units of computation

• Types

• Memory model

Units of computation

In OCaml

In OCaml

• Expressions that evaluate to values

• Everything is an expression

– int, bool, real

– if-then-else

– let-in

– match

– fn x -> x+1

– e1 e2

In Java/Python

2

In Java/Python

• Store and update commands

• Message sends

In Prolog

In Prolog

• Logical facts

• Inference rules

Mexican(CARNITAS)

Food(CARNITAS)

Mexican(X)  Food(X) Delicious(X)

Delicious(CARNITAS)

“Fact”

“Fact”

“Rule”

“Fact”

Types

Types

• Used to classify things created by the

programmer

• Classification used to check what can be

done with/to those things

In OCaml: Static typing

• Types are assigned statically at compile

time

• Without computing values

• Rules state when expressions are type-

correct
e1:T1→ T2 e2: T1

e1 e2 : T2

3

In OCaml: Static typing

• How can one reuse code for different

types?

– parametric types: ‘a * ‘b -> ‘b * ‘a

– implicit forall

• Type “discovered” (inferred)

automatically from code

– less burden on the programmer

In Python: Dynamic typing

• Types assigned to values/objects as they

are computed, ie: dynamically

• Before an operation is performed, check

that operands are compatible with

operation

In Python: Dynamic typing

• More programs are accepted by compiler

• More flexible, but find errors late

let x = if b then 1 else “abc”

let y = if b then x + 1 else x ^ “efg”

[1, “abc”, 1.8, [“efg”, 20]]

Dynamic vs. Static, OO vs. Func

Statically typed
Dynamically

typed

OO

Functional

Dynamic vs. Static, OO vs. Func

Statically typed
Dynamically

typed

OO Java
Python,

Smalltalk

Functional Ocaml, Haskell Lisp/Scheme

Polymorphism

• Can a language be dynamically typed, but not
polymorphic?

• Every dynamically typed language is
polymorphic
– functions just simply work on any datatype that can

be operated on at runtime

• Only need explicit polymorphism in statically
typed languages to assign at compile time a
suitably general polymorphic type

4

Memory/Data model

aka: what do variables refer to?

Data model in functional langs

• Environment of bindings (phonebook)

• Never change a binding

– add new bindings at the end of the

phonebook

Data model in functional langs

• Variables are names that refer into the
phonebook

• Most recent entry looked up during
evaluation

• Environment “frozen” inside function
value so that the behavior of the function
cannot be changed later on (easier
reasoning)

Data model in OO langs

• Variables are cells in memory

• Can change them by assigning into them

• Variables point to objects on the heap

• x = x + 10

Data model in Prolog

• Variables in Prolog are unknowns to solve

for

Mexican(CARNITAS)

Food(CARNITAS)

 X Mexican(X)  Food(X) Delicious(X)

Delicious(Y)?

Q: What is delicious?

A: CARNITAS!

Final words on functional

programming

5

What’s the point of all this? Advantages of functional progs

• Functional programming more concise

“one line of lisp can replace 20 lines of C”
(quote from http://www.ddj.com/dept/architect/184414500?pgno=3)

• Recall reverse function in OCaml:

• How many lines in C, C++?

let reverse = fold (::) [];;

Don’t be fooled

• Some of the programming assignments

made you do certain things using fold in

order to force you to think about it, even

though using fold was not the easiest way

to do it.

• But there are many cases where map and

fold make life A LOT EASIER.

Can better reason about progs

• No side effects. Call a function twice

with same params, produces same value

• As a result, computations can be

reordered more easily

• They can also be parallelized more easily

So what?

• From the authors of map reduce:

“Inspired by similar primitives in LISP and

other languages”
http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0003.html

• The point is this: programmers who only

know Java/C/C++ would probably not

have come up with this idea

• Many other similar examples in industry

This stuff is for real: F#

F# = Microsoft’s Ocaml-on-steroids

http://channel9.msdn.com/pdc2008/TL11/

• Why FP is way cool

• How FP works with Objects (C#)

• How FP allows you to write parallel code

… all with an extremely engaging speaker

http://www.ddj.com/dept/architect/184414500?pgno=3

6

Remember

• The next time you use google, think of

how functional programming has inspired

some of the technical ideas behind their

engine

• And of course:

“Free your mind”

-Morpheus

Recap of the course so far

• 4 weeks of functional with Ocaml

• Next: 4 weeks of OO with Python

• After that: 1 week of constraint logic

programming with Prolog

OO at the highest level

• What is OO programming?

OO at the highest level

• What is OO programming?

• Answer:

– objects

– message sends

– dynamic dispatch

Just to whet your appetite

• Say we have objects, like cars, ducks,

pig, cell_phones

• Say we have a message name:
make_some_noise

Just to whet your appetite

• Each object has its own implementation for
make_some_noise: these are traditionally
called methods.

• car: vroom vroom, pig : oink oink, duck:
quack quack

• We can send make_some_noise to any object.
Depending on the actually run-time object,
we’ll get a different noise!

7

OO programming

• Message: the name of an operation

• Method: the implementation of an
operation

• Dynamic dispatch: the act of determining
at based on the dynamic type which
method should be run for a given
message send.

• These are the core ideas of OO

This brings us to Python...

• We’ll use Python as our vehicle for OO

programming

• Fun and useful language

• Let’s compare with OCaml along some of

the dimensions we saw last time

OCaml/Python comparison

ML Python

PL paradigm

Basic unit

Types

DataModel

OCaml/Python comparison

ML Python

PL paradigm functional OO/imperative

Basic unit Expr/value
Objects/

messages

Types statically dynamicaclly

DataModel env lookup
“pointers” to

mutable objs

Python

• Python has a very relaxed philosophy

– if something "can be done" then it is allowed.

• Combination of dynamic types +

everything is an object makes for very

flexible, very intuitive code.

No static types

• No static type system to "prohibit"

operations.

• No more of that OCaml compiler giving

you hard-to-decypher error messages!

• And... No need to formally define the

type system (although still need to define

the dynamic semantics somehow)

8

No static types: but what instead?

• Dynamic typing

• At runtime, every "operation" is

translated to a method call on the

appropriate object.

• If the object supports the method, then

the computation proceeds.

• Duck-typing: if it looks like a duck,

quacks like a duck, then it is a duck!

Dynamic typing

• This loose, comfortable, free-style,

philosophy is at the heart of python.

• But... beware, can get burned...

• One way to think about it:

– Dynamic types good for quick prototyping

– Static types good for large systems

– Although…

– Gmail in Javascript?

Similarities to Ocaml

• Uniform model: everything is an object,

including functions

• Can pass functions around just as with

objects

• Supports functional programming style

with map and fold

Other cool things about Python

• A lot of stuff that you may first think is a

"language feature" is actually just

translated under the hood to a method

call...

• Very widely used, supported.

• Has libraries for all sorts of things.

Ok, let’s start playing with Python!

• Like Perl, python is a "managed" or

"interpreted" language that runs under

the python environment, i.e. not

compiled to machine code.

• Makes it convenient to rapidly write and

test code!

Ways to run Python code

• At an interactive Python prompt: like

"read-eval-print" loop of ML,

• As shell scripts,

• As stand-alone programs run from the

shell.

9

Let’s fire it up!

• Ok, let’s give it a try...

• See py file for the rest...

