Lecture 6: Reliable Transmission

CSE 123: Computer Networks
Alex Snoeren (guest lecture)
Lecture 6 Overview

- Finishing Error Detection
 - Cyclic Remainder Check (CRC)

- Handling errors
 - Automatic Repeat Request (ARQ)
 - Acknowledgements (ACKs) and timeouts
 - Stop-and-Wait
Checksums are easy to compute, but very fragile
- In particular, burst errors are frequently undetected
- We’d rather have a scheme that “smears” parity

Need to remain easy to implement in hardware
- So far just shift registers and an XOR gate

We’ll stick to Modulo-2 arithmetic
- Multiplication and division are XOR-based as well
- Let’s do some examples…
Modulo-2 Arithmetic

- Multiplication

\[
\begin{array}{c}
1101 \\
110 \\
\hline
0000 \\
11010 \\
110100 \\
101110 \\
\hline
1011110
\end{array}
\]

- Division

\[
\begin{array}{c}
1101 \\
\hline
101110 \\
110 \\
\hline
111 \\
110 \\
\hline
011 \\
000 \\
\hline
110
\end{array}
\]

CSE 123 – Lecture 6: Reliable Transmission
Cyclic Remainder Check

- Idea is to *divide* the incoming data, D, rather than add
 - The divisor is called the generator, g
- We can make a CRC resilient to k-bit burst errors
 - Need a generator of $k+1$ bits
- Divide 2^kD by g to get remainder, r
 - Remainder is called frame check sequence
- Send $2^kD - r$ (i.e., 2^kD XOR r)
 - Note 2^kD is just D shifted left k bits
 - Remainder must be at most k bits
- Receiver checks that $(2^kD-r)/g = 0$
Error Detection – CRC

- View data bits, D, as a binary number
- Choose $r+1$ bit pattern (generator), G
- Goal: choose r CRC bits, R, such that
 - $<D,R>$ exactly divisible by G (modulo 2)
 - Receiver knows G, divides $<D,R>$ by G. If non-zero remainder: error detected!
 - Can detect all burst errors less than $r+1$ bits
- Widely used in practice (Ethernet, FDDI, ATM)

\[D \cdot 2^r \quad \text{XOR} \quad R \]

\text{bit pattern}

\text{mathematical formula}
CRC: Rooted in Polynomials

- We’re *actually* doing polynomial arithmetic
 - Each bit is actually a coefficient of corresponding term in a k^{th}-degree polynomial

 \[1101 \text{ is } (1 \times X^3) + (1 \times X^2) + (0 \times X^1) + (1 \times X^0)\]

- Why do we care?
 - Can use the properties of finite fields to analyze effectiveness
 - Says any generator with two terms catches single bit errors

CSE 123 – Lecture 6: Reliable Transmission
CRC Example Encoding

\[
x^3 + x^2 + 1 = 1101 \quad \text{Generator}
\]
\[
x^7 + x^4 + x^3 + x = 10011010 \quad \text{Message}
\]

\[1101\]

\[10011010000\]

\[1101\]

\[1001\]
\[1101\]

\[1000\]
\[1101\]

\[1011\]
\[1101\]

\[1100\]
\[1101\]

\[1000\]
\[1101\]

\[101\]

Result:

Transmit message followed by remainder:

\[10011010101\]
CRC in Hardware

- Key observation is only subtract when MSB is one
 - Recall that subtraction is XOR
 - No explicit check for leading one by using as input to XOR

- Hardware cost very similar to checksum
 - We're only interested in remainder at the end
 - Only need k registers as remainder is only k bits
CRC Example Decoding

\[x^3 + x^2 + 1 \]
\[x^{10} + x^7 + x^6 + x^4 + x^2 + 1 \]

= 1101

Generator

= 10011010101

Received Message

k + 1 bit check
sequence \(g \),
equivalent to a
degree-\(k \) polynomial

\[x^{10} + x^7 + x^6 + x^4 + x^2 + 1 \]

1101

10011010101

Received message, no errors

Result:

CRC test is passed

Remainder

\[D \mod g \]

0
CRC Example Failure

\[
\begin{align*}
 x^3 + x^2 + 1 &= 1101 \\
 x^{10} + x^7 + x^5 + x^4 + x^2 + 1 &= 10010110101
\end{align*}
\]

Generator

Received Message

\[
\begin{align*}
 k + 1 \text{ bit check sequence } g, \\
\text{equivalent to a degree-} k \text{ polynomial}
\end{align*}
\]

Received message

Two bit errors

Result:

CRC test failed

CSE 123 – Lecture 6: Reliable Transmission
Common Generators

<table>
<thead>
<tr>
<th>Generator</th>
<th>Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-8</td>
<td>$x^8 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-10</td>
<td>$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-12</td>
<td>$x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-16</td>
<td>$x^{16} + x^{15} + x^2 + 1$</td>
</tr>
<tr>
<td>CRC-CCITT</td>
<td>$x^{16} + x^{12} + x^5 + 1$</td>
</tr>
<tr>
<td>CRC-32</td>
<td>$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$</td>
</tr>
</tbody>
</table>
Error Handling Summary

- Add redundant bits to detect if frame has errors
 - A few bits can detect errors
 - Need more to correct errors

- Strength of code depends on Hamming Distance
 - Number of bitflips between codewords

- Checksums and CRCs are typical methods
 - Both cheap and easy to implement in hardware
 - CRC much more robust against burst errors
Picking up the Pieces

- Link layer is lossy
 - We deliberately threw away corrupt frames last lecture
 - Infrequent bit errors still lead to occasional frame errors
 » 10,000+ bits in each frame

- Things get even harrier if we consider multiple links
 - In a few lectures, we’ll start sending frames on long trips
 - Each intermediate stop might lose, corrupt, *reorder*, etc.
 - Regardless of cause, we’ll call loss events *drops*

- We want to provide reliable, in-order delivery
 - Can—and will—do this at multiple layers
Stepping back:
A thought experiment

● You want to send a long letter to your friend
 ◆ The only medium available to either of you is *postcards*
 ◆ Postcards get lost in the mail, delayed, damaged, reordered

● How do you ensure that your friend receives the letter?
Reliable Transmission

- The data networking version of the same problem
 - How do we reliably send a message when packets can be lost/corrupted in the network?

- Two options
 - Detect a loss/corruption and retransmit
 - Send data redundantly to tolerate loss/corruption
Simple Idea: ARQ

- Receiver sends **acknowledgments** (ACKs)
 - Sender “times out” and retransmits if it doesn’t receive them
- Basic approach is generically referred to as **Automatic Repeat Request** (ARQ)
Not So Fast…

- Loss can occur on ACK channel as well
 - Sender cannot distinguish data loss from ACK loss
 - Sender will retransmit the data frame
- ACK loss—or early timeout—results in duplication
 - The receiver thinks the retransmission is new data

CSE 123 – Lecture 6: Reliable Transmission
Sequence Numbers

- Sequence numbers solve this problem
 - Receiver can simply ignore duplicate data
 - But must still send an ACK! (Why?)

- Simplest ARQ: **Stop-and-wait**
 - Only one outstanding frame at a time
What if packets are delayed?

- One bit not enough... what to do?
 - Never reuse a seq #?
 - Seq #s could be really big
 - Require in-order delivery?
 - Hard to guarantee in some networks

- Prevent very late delivery?
 - Limit lifetime of each packet (drop pkt if not delivered in n seconds)
 - Seq #s not reused within delay bound
 - Approximate with big seq #s

Accept! Reject!
For Next Time

- Sliding Windows
 - Read 2.6 in P&D
 - Guest Lecture: Geoff Voelker

- HW #1 due (at beginning of class)